CLI reference¶
The datasette
CLI tool provides a number of commands.
Running datasette
without specifying a command runs the default command, datasette serve
. See datasette serve for the full list of options for that command.
datasette --help¶
Running datasette --help
shows a list of all of the available commands.
Usage: datasette [OPTIONS] COMMAND [ARGS]...
Datasette is an open source multi-tool for exploring and publishing data
About Datasette: https://datasette.io/
Full documentation: https://docs.datasette.io/
Options:
--version Show the version and exit.
--help Show this message and exit.
Commands:
serve* Serve up specified SQLite database files with a web UI
inspect Generate JSON summary of provided database files
install Install plugins and packages from PyPI into the same...
package Package SQLite files into a Datasette Docker container
plugins List currently installed plugins
publish Publish specified SQLite database files to the internet along...
uninstall Uninstall plugins and Python packages from the Datasette...
Additional commands added by plugins that use the register_commands(cli) hook will be listed here as well.
datasette serve¶
This command starts the Datasette web application running on your machine:
datasette serve mydatabase.db
Or since this is the default command you can run this instead:
datasette mydatabase.db
Once started you can access it at http://localhost:8001
Usage: datasette serve [OPTIONS] [FILES]...
Serve up specified SQLite database files with a web UI
Options:
-i, --immutable PATH Database files to open in immutable mode
-h, --host TEXT Host for server. Defaults to 127.0.0.1 which
means only connections from the local machine
will be allowed. Use 0.0.0.0 to listen to all
IPs and allow access from other machines.
-p, --port INTEGER RANGE Port for server, defaults to 8001. Use -p 0 to
automatically assign an available port.
[0<=x<=65535]
--uds TEXT Bind to a Unix domain socket
--reload Automatically reload if code or metadata
change detected - useful for development
--cors Enable CORS by serving Access-Control-Allow-
Origin: *
--load-extension PATH:ENTRYPOINT?
Path to a SQLite extension to load, and
optional entrypoint
--inspect-file TEXT Path to JSON file created using "datasette
inspect"
-m, --metadata FILENAME Path to JSON/YAML file containing
license/source metadata
--template-dir DIRECTORY Path to directory containing custom templates
--plugins-dir DIRECTORY Path to directory containing custom plugins
--static MOUNT:DIRECTORY Serve static files from this directory at
/MOUNT/...
--memory Make /_memory database available
--config CONFIG Deprecated: set config option using
configname:value. Use --setting instead.
--setting SETTING... Setting, see
docs.datasette.io/en/stable/settings.html
--secret TEXT Secret used for signing secure values, such as
signed cookies
--root Output URL that sets a cookie authenticating
the root user
--get TEXT Run an HTTP GET request against this path,
print results and exit
--version-note TEXT Additional note to show on /-/versions
--help-settings Show available settings
--pdb Launch debugger on any errors
-o, --open Open Datasette in your web browser
--create Create database files if they do not exist
--crossdb Enable cross-database joins using the /_memory
database
--nolock Ignore locking, open locked files in read-only
mode
--ssl-keyfile TEXT SSL key file
--ssl-certfile TEXT SSL certificate file
--help Show this message and exit.
datasette --get¶
The --get
option to datasette serve
(or just datasette
) specifies the path to a page within Datasette and causes Datasette to output the content from that path without starting the web server.
This means that all of Datasette's functionality can be accessed directly from the command-line.
For example:
$ datasette --get '/-/versions.json' | jq .
{
"python": {
"version": "3.8.5",
"full": "3.8.5 (default, Jul 21 2020, 10:48:26) \n[Clang 11.0.3 (clang-1103.0.32.62)]"
},
"datasette": {
"version": "0.46+15.g222a84a.dirty"
},
"asgi": "3.0",
"uvicorn": "0.11.8",
"sqlite": {
"version": "3.32.3",
"fts_versions": [
"FTS5",
"FTS4",
"FTS3"
],
"extensions": {
"json1": null
},
"compile_options": [
"COMPILER=clang-11.0.3",
"ENABLE_COLUMN_METADATA",
"ENABLE_FTS3",
"ENABLE_FTS3_PARENTHESIS",
"ENABLE_FTS4",
"ENABLE_FTS5",
"ENABLE_GEOPOLY",
"ENABLE_JSON1",
"ENABLE_PREUPDATE_HOOK",
"ENABLE_RTREE",
"ENABLE_SESSION",
"MAX_VARIABLE_NUMBER=250000",
"THREADSAFE=1"
]
}
}
The exit code will be 0 if the request succeeds and 1 if the request produced an HTTP status code other than 200 - e.g. a 404 or 500 error.
This lets you use datasette --get /
to run tests against a Datasette application in a continuous integration environment such as GitHub Actions.
datasette serve --help-settings¶
This command outputs all of the available Datasette settings.
These can be passed to datasette serve
using datasette serve --setting name value
.
Settings:
default_page_size Default page size for the table view
(default=100)
max_returned_rows Maximum rows that can be returned from a table or
custom query (default=1000)
num_sql_threads Number of threads in the thread pool for
executing SQLite queries (default=3)
sql_time_limit_ms Time limit for a SQL query in milliseconds
(default=1000)
default_facet_size Number of values to return for requested facets
(default=30)
facet_time_limit_ms Time limit for calculating a requested facet
(default=200)
facet_suggest_time_limit_ms Time limit for calculating a suggested facet
(default=50)
allow_facet Allow users to specify columns to facet using
?_facet= parameter (default=True)
default_allow_sql Allow anyone to run arbitrary SQL queries
(default=True)
allow_download Allow users to download the original SQLite
database files (default=True)
suggest_facets Calculate and display suggested facets
(default=True)
default_cache_ttl Default HTTP cache TTL (used in Cache-Control:
max-age= header) (default=5)
cache_size_kb SQLite cache size in KB (0 == use SQLite default)
(default=0)
allow_csv_stream Allow .csv?_stream=1 to download all rows
(ignoring max_returned_rows) (default=True)
max_csv_mb Maximum size allowed for CSV export in MB - set 0
to disable this limit (default=100)
truncate_cells_html Truncate cells longer than this in HTML table
view - set 0 to disable (default=2048)
force_https_urls Force URLs in API output to always use https://
protocol (default=False)
template_debug Allow display of template debug information with
?_context=1 (default=False)
trace_debug Allow display of SQL trace debug information with
?_trace=1 (default=False)
base_url Datasette URLs should use this base path
(default=/)
datasette plugins¶
Output JSON showing all currently installed plugins, their versions, whether they include static files or templates and which Plugin hooks they use.
Usage: datasette plugins [OPTIONS]
List currently installed plugins
Options:
--all Include built-in default plugins
--plugins-dir DIRECTORY Path to directory containing custom plugins
--help Show this message and exit.
Example output:
[
{
"name": "datasette-geojson",
"static": false,
"templates": false,
"version": "0.3.1",
"hooks": [
"register_output_renderer"
]
},
{
"name": "datasette-geojson-map",
"static": true,
"templates": false,
"version": "0.4.0",
"hooks": [
"extra_body_script",
"extra_css_urls",
"extra_js_urls"
]
},
{
"name": "datasette-leaflet",
"static": true,
"templates": false,
"version": "0.2.2",
"hooks": [
"extra_body_script",
"extra_template_vars"
]
}
]
datasette install¶
Install new Datasette plugins. This command works like pip install
but ensures that your plugins will be installed into the same environment as Datasette.
This command:
datasette install datasette-cluster-map
Would install the datasette-cluster-map plugin.
Usage: datasette install [OPTIONS] PACKAGES...
Install plugins and packages from PyPI into the same environment as Datasette
Options:
-U, --upgrade Upgrade packages to latest version
--help Show this message and exit.
datasette uninstall¶
Uninstall one or more plugins.
Usage: datasette uninstall [OPTIONS] PACKAGES...
Uninstall plugins and Python packages from the Datasette environment
Options:
-y, --yes Don't ask for confirmation
--help Show this message and exit.
datasette publish¶
Shows a list of available deployment targets for publishing data with Datasette.
Additional deployment targets can be added by plugins that use the publish_subcommand(publish) hook.
Usage: datasette publish [OPTIONS] COMMAND [ARGS]...
Publish specified SQLite database files to the internet along with a
Datasette-powered interface and API
Options:
--help Show this message and exit.
Commands:
cloudrun Publish databases to Datasette running on Cloud Run
heroku Publish databases to Datasette running on Heroku
datasette publish cloudrun¶
See Publishing to Google Cloud Run.
Usage: datasette publish cloudrun [OPTIONS] [FILES]...
Publish databases to Datasette running on Cloud Run
Options:
-m, --metadata FILENAME Path to JSON/YAML file containing metadata to
publish
--extra-options TEXT Extra options to pass to datasette serve
--branch TEXT Install datasette from a GitHub branch e.g.
main
--template-dir DIRECTORY Path to directory containing custom templates
--plugins-dir DIRECTORY Path to directory containing custom plugins
--static MOUNT:DIRECTORY Serve static files from this directory at
/MOUNT/...
--install TEXT Additional packages (e.g. plugins) to install
--plugin-secret <TEXT TEXT TEXT>...
Secrets to pass to plugins, e.g. --plugin-
secret datasette-auth-github client_id xxx
--version-note TEXT Additional note to show on /-/versions
--secret TEXT Secret used for signing secure values, such as
signed cookies
--title TEXT Title for metadata
--license TEXT License label for metadata
--license_url TEXT License URL for metadata
--source TEXT Source label for metadata
--source_url TEXT Source URL for metadata
--about TEXT About label for metadata
--about_url TEXT About URL for metadata
-n, --name TEXT Application name to use when building
--service TEXT Cloud Run service to deploy (or over-write)
--spatialite Enable SpatialLite extension
--show-files Output the generated Dockerfile and
metadata.json
--memory TEXT Memory to allocate in Cloud Run, e.g. 1Gi
--cpu [1|2|4] Number of vCPUs to allocate in Cloud Run
--timeout INTEGER Build timeout in seconds
--apt-get-install TEXT Additional packages to apt-get install
--max-instances INTEGER Maximum Cloud Run instances
--min-instances INTEGER Minimum Cloud Run instances
--help Show this message and exit.
datasette publish heroku¶
See Publishing to Heroku.
Usage: datasette publish heroku [OPTIONS] [FILES]...
Publish databases to Datasette running on Heroku
Options:
-m, --metadata FILENAME Path to JSON/YAML file containing metadata to
publish
--extra-options TEXT Extra options to pass to datasette serve
--branch TEXT Install datasette from a GitHub branch e.g.
main
--template-dir DIRECTORY Path to directory containing custom templates
--plugins-dir DIRECTORY Path to directory containing custom plugins
--static MOUNT:DIRECTORY Serve static files from this directory at
/MOUNT/...
--install TEXT Additional packages (e.g. plugins) to install
--plugin-secret <TEXT TEXT TEXT>...
Secrets to pass to plugins, e.g. --plugin-
secret datasette-auth-github client_id xxx
--version-note TEXT Additional note to show on /-/versions
--secret TEXT Secret used for signing secure values, such as
signed cookies
--title TEXT Title for metadata
--license TEXT License label for metadata
--license_url TEXT License URL for metadata
--source TEXT Source label for metadata
--source_url TEXT Source URL for metadata
--about TEXT About label for metadata
--about_url TEXT About URL for metadata
-n, --name TEXT Application name to use when deploying
--tar TEXT --tar option to pass to Heroku, e.g.
--tar=/usr/local/bin/gtar
--generate-dir DIRECTORY Output generated application files and stop
without deploying
--help Show this message and exit.
datasette package¶
Package SQLite files into a Datasette Docker container, see datasette package.
Usage: datasette package [OPTIONS] FILES...
Package SQLite files into a Datasette Docker container
Options:
-t, --tag TEXT Name for the resulting Docker container, can
optionally use name:tag format
-m, --metadata FILENAME Path to JSON/YAML file containing metadata to
publish
--extra-options TEXT Extra options to pass to datasette serve
--branch TEXT Install datasette from a GitHub branch e.g. main
--template-dir DIRECTORY Path to directory containing custom templates
--plugins-dir DIRECTORY Path to directory containing custom plugins
--static MOUNT:DIRECTORY Serve static files from this directory at /MOUNT/...
--install TEXT Additional packages (e.g. plugins) to install
--spatialite Enable SpatialLite extension
--version-note TEXT Additional note to show on /-/versions
--secret TEXT Secret used for signing secure values, such as
signed cookies
-p, --port INTEGER RANGE Port to run the server on, defaults to 8001
[1<=x<=65535]
--title TEXT Title for metadata
--license TEXT License label for metadata
--license_url TEXT License URL for metadata
--source TEXT Source label for metadata
--source_url TEXT Source URL for metadata
--about TEXT About label for metadata
--about_url TEXT About URL for metadata
--help Show this message and exit.
datasette inspect¶
Outputs JSON representing introspected data about one or more SQLite database files.
If you are opening an immutable database, you can pass this file to the --inspect-data
option to improve Datasette's performance by allowing it to skip running row counts against the database when it first starts running:
datasette inspect mydatabase.db > inspect-data.json
datasette serve -i mydatabase.db --inspect-file inspect-data.json
This performance optimization is used automatically by some of the datasette publish
commands. You are unlikely to need to apply this optimization manually.
Usage: datasette inspect [OPTIONS] [FILES]...
Generate JSON summary of provided database files
This can then be passed to "datasette --inspect-file" to speed up count
operations against immutable database files.
Options:
--inspect-file TEXT
--load-extension PATH:ENTRYPOINT?
Path to a SQLite extension to load, and
optional entrypoint
--help Show this message and exit.