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An open source multi-tool for exploring and publishing data

Datasette is a tool for exploring and publishing data. It helps people take data of any shape or size and publish that as
an interactive, explorable website and accompanying API.

Datasette is aimed at data journalists, museum curators, archivists, local governments and anyone else who has data
that they wish to share with the world. It is part of a wider ecosystem of tools and plugins dedicated to making working
with structured data as productive as possible.

Explore a demo, watch a presentation about the project or Try Datasette without installing anything using Glitch.

More examples: https://datasette.io/examples

Support questions, feedback? Join our GitHub Discussions forum.
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CHAPTER 1

Contents

1.1 Getting started

1.1.1 Play with a live demo

The best way to experience Datasette for the first time is with a demo:

• global-power-plants.datasettes.com provides a searchable database of power plants around the world, using data
from the World Resources Institude rendered using the datasette-cluster-map plugin.

• fivethirtyeight.datasettes.com shows Datasette running against over 400 datasets imported from the FiveThir-
tyEight GitHub repository.

1.1.2 Try Datasette without installing anything using Glitch

Glitch is a free online tool for building web apps directly from your web browser. You can use Glitch to try out
Datasette without needing to install any software on your own computer.

Here’s a demo project on Glitch which you can use as the basis for your own experiments:

glitch.com/~datasette-csvs

Glitch allows you to "remix" any project to create your own copy and start editing it in your browser. You can remix
the datasette-csvs project by clicking this button:

Find a CSV file and drag it onto the Glitch file explorer panel - datasette-csvs will automatically convert it to a
SQLite database (using sqlite-utils) and allow you to start exploring it using Datasette.

If your CSV file has a latitude and longitude column you can visualize it on a map by uncommenting the
datasette-cluster-map line in the requirements.txt file using the Glitch file editor.

Need some data? Try this Public Art Data for the city of Seattle - hit "Export" and select "CSV" to download it as a
CSV file.
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For more on how this works, see Running Datasette on Glitch.

1.1.3 Using Datasette on your own computer

First, follow the Installation instructions. Now you can run Datasette against a SQLite file on your computer using the
following command:

datasette path/to/database.db

This will start a web server on port 8001 - visit http://localhost:8001/ to access the web interface.

Add -o to open your browser automatically once Datasette has started:

datasette path/to/database.db -o

Use Chrome on OS X? You can run datasette against your browser history like so:

datasette ~/Library/Application\ Support/Google/Chrome/Default/History

Now visiting http://localhost:8001/History/downloads will show you a web interface to browse your downloads data:

http://localhost:8001/History/downloads.json will return that data as JSON:

{
"database": "History",
"columns": [

"id",
"current_path",
"target_path",
"start_time",
"received_bytes",
"total_bytes",
...

],
"rows": [

[
1,
"/Users/simonw/Downloads/DropboxInstaller.dmg",
"/Users/simonw/Downloads/DropboxInstaller.dmg",
13097290269022132,
626688,
0,
...

]

(continues on next page)
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(continued from previous page)

]
}

http://localhost:8001/History/downloads.json?_shape=objects will return that data as JSON in a more convenient for-
mat:

{
...
"rows": [

{
"start_time": 13097290269022132,
"interrupt_reason": 0,
"hash": "",
"id": 1,
"site_url": "",
"referrer": "https://www.dropbox.com/downloading?src=index",
...

}
]

}

1.1.4 datasette –get

The --get option can specify the path to a page within Datasette and cause Datasette to output the content from that
path without starting the web server. This means that all of Datasette’s functionality can be accessed directly from the
command-line. For example:

$ datasette --get '/-/versions.json' | jq .
{

"python": {
"version": "3.8.5",
"full": "3.8.5 (default, Jul 21 2020, 10:48:26) \n[Clang 11.0.3 (clang-1103.0.32.

→˓62)]"
},
"datasette": {
"version": "0.46+15.g222a84a.dirty"

},
"asgi": "3.0",
"uvicorn": "0.11.8",
"sqlite": {
"version": "3.32.3",
"fts_versions": [

"FTS5",
"FTS4",
"FTS3"

],
"extensions": {

"json1": null
},
"compile_options": [

"COMPILER=clang-11.0.3",
"ENABLE_COLUMN_METADATA",
"ENABLE_FTS3",
"ENABLE_FTS3_PARENTHESIS",
"ENABLE_FTS4",

(continues on next page)
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"ENABLE_FTS5",
"ENABLE_GEOPOLY",
"ENABLE_JSON1",
"ENABLE_PREUPDATE_HOOK",
"ENABLE_RTREE",
"ENABLE_SESSION",
"MAX_VARIABLE_NUMBER=250000",
"THREADSAFE=1"

]
}

}

The exit code will be 0 if the request succeeds and 1 if the request produced an HTTP status code other than 200 - e.g.
a 404 or 500 error. This means you can use datasette --get / to run tests against a Datasette application in a
continuous integration environment such as GitHub Actions.

1.1.5 datasette serve –help

Running datasette downloads.db executes the default serve sub-command, and is equivalent to running
datasette serve downloads.db. The full list of options to that command is shown below.

$ datasette serve --help

Usage: datasette serve [OPTIONS] [FILES]...

Serve up specified SQLite database files with a web UI

Options:
-i, --immutable PATH Database files to open in immutable mode
-h, --host TEXT Host for server. Defaults to 127.0.0.1 which means only

connections from the local machine will be allowed. Use
0.0.0.0 to listen to all IPs and allow access from other
machines.

-p, --port INTEGER RANGE Port for server, defaults to 8001. Use -p 0 to
→˓automatically

assign an available port. [0<=x<=65535]
--uds TEXT Bind to a Unix domain socket
--reload Automatically reload if code or metadata change detected -

useful for development
--cors Enable CORS by serving Access-Control-Allow-Origin: *
--load-extension TEXT Path to a SQLite extension to load
--inspect-file TEXT Path to JSON file created using "datasette inspect"
-m, --metadata FILENAME Path to JSON/YAML file containing license/source metadata
--template-dir DIRECTORY Path to directory containing custom templates
--plugins-dir DIRECTORY Path to directory containing custom plugins
--static MOUNT:DIRECTORY Serve static files from this directory at /MOUNT/...
--memory Make /_memory database available
--config CONFIG Deprecated: set config option using configname:value. Use

--setting instead.
--setting SETTING... Setting, see docs.datasette.io/en/stable/config.html
--secret TEXT Secret used for signing secure values, such as signed

cookies
--root Output URL that sets a cookie authenticating the root user
--get TEXT Run an HTTP GET request against this path, print results

→˓and

(continues on next page)
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exit
--version-note TEXT Additional note to show on /-/versions
--help-config Show available config options
--pdb Launch debugger on any errors
-o, --open Open Datasette in your web browser
--create Create database files if they do not exist
--crossdb Enable cross-database joins using the /_memory database
--ssl-keyfile TEXT SSL key file
--ssl-certfile TEXT SSL certificate file
--help Show this message and exit.

1.2 Installation

Note: If you just want to try Datasette out you don’t need to install anything: see Try Datasette without installing
anything using Glitch

There are two main options for installing Datasette. You can install it directly on to your machine, or you can install it
using Docker.

If you want to start making contributions to the Datasette project by installing a copy that lets you directly modify the
code, take a look at our guide to Setting up a development environment.

• Basic installation

– Using Homebrew

– Using pip

• Advanced installation options

– Using pipx

* Upgrading packages using pipx

– Using Docker

* Loading SpatiaLite

* Installing plugins

1.2.1 Basic installation

Using Homebrew

If you have a Mac and use Homebrew, you can install Datasette by running this command in your terminal:

brew install datasette

This should install the latest version. You can confirm by running:

datasette --version

1.2. Installation 7
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You can upgrade to the latest Homebrew packaged version using:

brew upgrade datasette

Once you have installed Datasette you can install plugins using the following:

datasette install datasette-vega

If the latest packaged release of Datasette has not yet been made available through Homebrew, you can upgrade your
Homebrew installation in-place using:

datasette install -U datasette

Using pip

Datasette requires Python 3.6 or higher. Visit InstallPython3.com for step-by-step installation guides for your operating
system.

You can install Datasette and its dependencies using pip:

pip install datasette

You can now run Datasette like so:

datasette

1.2.2 Advanced installation options

Using pipx

pipx is a tool for installing Python software with all of its dependencies in an isolated environment, to ensure that they
will not conflict with any other installed Python software.

If you use Homebrew on macOS you can install pipx like this:

brew install pipx
pipx ensurepath

Without Homebrew you can install it like so:

python3 -m pip install --user pipx
python3 -m pipx ensurepath

The pipx ensurepath command configures your shell to ensure it can find commands that have been installed by
pipx - generally by making sure ~/.local/bin has been added to your PATH.

Once pipx is installed you can use it to install Datasette like this:

pipx install datasette

Then run datasette --version to confirm that it has been successfully installed.
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Upgrading packages using pipx

You can upgrade your pipx installation to the latest release of Datasette using pipx upgrade datasette:

$ pipx upgrade datasette
upgraded package datasette from 0.39 to 0.40 (location: /Users/simon/.local/pipx/
→˓venvs/datasette)

To upgrade a plugin within the pipx environment use pipx runpip datasette install -U
name-of-plugin - like this:

% datasette plugins
[

{
"name": "datasette-vega",
"static": true,
"templates": false,
"version": "0.6"

}
]

$ pipx runpip datasette install -U datasette-vega
Collecting datasette-vega
Downloading datasette_vega-0.6.2-py3-none-any.whl (1.8 MB)

|| 1.8 MB 2.0 MB/s
...
Installing collected packages: datasette-vega
Attempting uninstall: datasette-vega

Found existing installation: datasette-vega 0.6
Uninstalling datasette-vega-0.6:
Successfully uninstalled datasette-vega-0.6

Successfully installed datasette-vega-0.6.2

$ datasette plugins
[

{
"name": "datasette-vega",
"static": true,
"templates": false,
"version": "0.6.2"

}
]

Using Docker

A Docker image containing the latest release of Datasette is published to Docker Hub here: https://hub.docker.com/r/
datasetteproject/datasette/

If you have Docker installed (for example with Docker for Mac on OS X) you can download and run this image like
so:

docker run -p 8001:8001 -v `pwd`:/mnt \
datasetteproject/datasette \
datasette -p 8001 -h 0.0.0.0 /mnt/fixtures.db

This will start an instance of Datasette running on your machine’s port 8001, serving the fixtures.db file in your
current directory.
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Now visit http://127.0.0.1:8001/ to access Datasette.

(You can download a copy of fixtures.db from https://latest.datasette.io/fixtures.db )

To upgrade to the most recent release of Datasette, run the following:

docker pull datasetteproject/datasette

Loading SpatiaLite

The datasetteproject/datasette image includes a recent version of the SpatiaLite extension for SQLite. To
load and enable that module, use the following command:

docker run -p 8001:8001 -v `pwd`:/mnt \
datasetteproject/datasette \
datasette -p 8001 -h 0.0.0.0 /mnt/fixtures.db \
--load-extension=spatialite

You can confirm that SpatiaLite is successfully loaded by visiting http://127.0.0.1:8001/-/versions

Installing plugins

If you want to install plugins into your local Datasette Docker image you can do so using the following recipe. This
will install the plugins and then save a brand new local image called datasette-with-plugins:

docker run datasetteproject/datasette \
pip install datasette-vega

docker commit $(docker ps -lq) datasette-with-plugins

You can now run the new custom image like so:

docker run -p 8001:8001 -v `pwd`:/mnt \
datasette-with-plugins \
datasette -p 8001 -h 0.0.0.0 /mnt/fixtures.db

You can confirm that the plugins are installed by visiting http://127.0.0.1:8001/-/plugins

Some plugins such as datasette-ripgrep may need additional system packages. You can install these by running apt-get
install inside the container:

docker run datasette-057a0 bash -c '
apt-get update &&
apt-get install ripgrep &&
pip install datasette-ripgrep'

docker commit $(docker ps -lq) datasette-with-ripgrep

1.3 The Datasette Ecosystem

Datasette sits at the center of a growing ecosystem of open source tools aimed at making it as easy as possible to
gather, analyze and publish interesting data.
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These tools are divided into two main groups: tools for building SQLite databases (for use with Datasette) and plugins
that extend Datasette’s functionality.

The Datasette project website includes a directory of plugins and a directory of tools:

• Plugins directory on datasette.io

• Tools directory on datasette.io

1.3.1 sqlite-utils

sqlite-utils is a key building block for the wider Datasette ecosystem. It provides a collection of utilities for manipu-
lating SQLite databases, both as a Python library and a command-line utility. Features include:

• Insert data into a SQLite database from JSON, CSV or TSV, automatically creating tables with the correct
schema or altering existing tables to add missing columns.

• Configure tables for use with SQLite full-text search, including creating triggers needed to keep the search index
up-to-date.

• Modify tables in ways that are not supported by SQLite’s default ALTER TABLE syntax - for example changing
the types of columns or selecting a new primary key for a table.

• Adding foreign keys to existing database tables.

• Extracting columns of data into a separate lookup table.

1.3.2 Dogsheep

Dogsheep is a collection of tools for personal analytics using SQLite and Datasette. The project provides tools like
github-to-sqlite and twitter-to-sqlite that can import data from different sources in order to create a personal data
warehouse. Personal Data Warehouses: Reclaiming Your Data is a talk that explains Dogsheep and demonstrates it in
action.

1.4 Pages and API endpoints

The Datasette web application offers a number of different pages that can be accessed to explore the data in question,
each of which is accompanied by an equivalent JSON API.

1.4.1 Top-level index

The root page of any Datasette installation is an index page that lists all of the currently attached databases. Some
examples:

• fivethirtyeight.datasettes.com

• global-power-plants.datasettes.com

• register-of-members-interests.datasettes.com

Add /.json to the end of the URL for the JSON version of the underlying data:

• fivethirtyeight.datasettes.com/.json

• global-power-plants.datasettes.com/.json

• register-of-members-interests.datasettes.com/.json
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1.4.2 Database

Each database has a page listing the tables, views and canned queries available for that database. If the execute-sql
permission is enabled (it’s on by default) there will also be an interface for executing arbitrary SQL select queries
against the data.

Examples:

• fivethirtyeight.datasettes.com/fivethirtyeight

• global-power-plants.datasettes.com/global-power-plants

The JSON version of this page provides programmatic access to the underlying data:

• fivethirtyeight.datasettes.com/fivethirtyeight.json

• global-power-plants.datasettes.com/global-power-plants.json

1.4.3 Table

The table page is the heart of Datasette: it allows users to interactively explore the contents of a database table,
including sorting, filtering, Full-text search and applying Facets.

The HTML interface is worth spending some time exploring. As with other pages, you can return the JSON data by
appending .json to the URL path, before any ? query string arguments.

The query string arguments are described in more detail here: Table arguments

You can also use the table page to interactively construct a SQL query - by applying different filters and a sort order
for example - and then click the "View and edit SQL" link to see the SQL query that was used for the page and edit
and re-submit it.

Some examples:

• ../items lists all of the line-items registered by UK MPs as potential conflicts of interest. It demonstrates
Datasette’s support for Full-text search.

• ../antiquities-act%2Factions_under_antiquities_act is an interface for exploring the "actions under the antiquities
act" data table published by FiveThirtyEight.

• ../global-power-plants?country_long=United+Kingdom&primary_fuel=Gas is a filtered table page showing ev-
ery Gas power plant in the United Kingdom. It includes some default facets (configured using its metadata.json)
and uses the datasette-cluster-map plugin to show a map of the results.

1.4.4 Row

Every row in every Datasette table has its own URL. This means individual records can be linked to directly.

Table cells with extremely long text contents are truncated on the table view according to the truncate_cells_html
setting. If a cell has been truncated the full length version of that cell will be available on the row page.

Rows which are the targets of foreign key references from other tables will show a link to a filtered search for all
records that reference that row. Here’s an example from the Registers of Members Interests database:

../people/uk.org.publicwhip%2Fperson%2F10001

Note that this URL includes the encoded primary key of the record.

Here’s that same page as JSON:

../people/uk.org.publicwhip%2Fperson%2F10001.json

12 Chapter 1. Contents

https://fivethirtyeight.datasettes.com/fivethirtyeight
https://global-power-plants.datasettes.com/global-power-plants
https://fivethirtyeight.datasettes.com/fivethirtyeight.json
https://global-power-plants.datasettes.com/global-power-plants.json
https://register-of-members-interests.datasettes.com/regmem/items
https://fivethirtyeight.datasettes.com/fivethirtyeight/antiquities-act%2Factions_under_antiquities_act
https://global-power-plants.datasettes.com/global-power-plants/global-power-plants?_facet=primary_fuel&_facet=owner&_facet=country_long&country_long__exact=United+Kingdom&primary_fuel=Gas
https://global-power-plants.datasettes.com/-/metadata
https://github.com/simonw/datasette-cluster-map
https://register-of-members-interests.datasettes.com/regmem/people/uk.org.publicwhip%2Fperson%2F10001
https://register-of-members-interests.datasettes.com/regmem/people/uk.org.publicwhip%2Fperson%2F10001.json


Datasette Documentation

1.5 Publishing data

Datasette includes tools for publishing and deploying your data to the internet. The datasette publish com-
mand will deploy a new Datasette instance containing your databases directly to a Heroku or Google Cloud hosting
account. You can also use datasette package to create a Docker image that bundles your databases together
with the datasette application that is used to serve them.

1.5.1 datasette publish

Once you have created a SQLite database (e.g. using csvs-to-sqlite) you can deploy it to a hosting account using a
single command.

You will need a hosting account with Heroku or Google Cloud. Once you have created your account you will need to
install and configure the heroku or gcloud command-line tools.

Publishing to Google Cloud Run

Google Cloud Run launched as a GA in in November 2019. It allows you to publish data in a scale-to-zero environ-
ment, so your application will start running when the first request is received and will shut down again when traffic
ceases. This means you only pay for time spent serving traffic.

You will first need to install and configure the Google Cloud CLI tools by following these instructions.

You can then publish a database to Google Cloud Run using the following command:

datasette publish cloudrun mydatabase.db --service=my-database

A Cloud Run service is a single hosted application. The service name you specify will be used as part of the Cloud Run
URL. If you deploy to a service name that you have used in the past your new deployment will replace the previous
one.

If you omit the --service option you will be asked to pick a service name interactively during the deploy.

You may need to interact with prompts from the tool. Many of the prompts ask for values that can be set as properties
for the Google Cloud SDK if you want to avoid the prompts.

For example, the default region for the deployed instance can be set using the command:

gcloud config set run/region us-central1

You should replace us-central1 with your desired region. Alternately, you can specify the region by setting the
CLOUDSDK_RUN_REGION environment variable.

Once it has finished it will output a URL like this one:

Service [my-service] revision [my-service-00001] has been deployed
and is serving traffic at https://my-service-j7hipcg4aq-uc.a.run.app

Cloud Run provides a URL on the .run.app domain, but you can also point your own domain or subdomain at your
Cloud Run service - see mapping custom domains in the Cloud Run documentation for details.

$ datasette publish cloudrun --help

Usage: datasette publish cloudrun [OPTIONS] [FILES]...

Options:

(continues on next page)
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(continued from previous page)

-m, --metadata FILENAME Path to JSON/YAML file containing metadata to
→˓publish
--extra-options TEXT Extra options to pass to datasette serve
--branch TEXT Install datasette from a GitHub branch e.g. main
--template-dir DIRECTORY Path to directory containing custom templates
--plugins-dir DIRECTORY Path to directory containing custom plugins
--static MOUNT:DIRECTORY Serve static files from this directory at /MOUNT/...
--install TEXT Additional packages (e.g. plugins) to install
--plugin-secret <TEXT TEXT TEXT>...

Secrets to pass to plugins, e.g. --plugin-secret
datasette-auth-github client_id xxx

--version-note TEXT Additional note to show on /-/versions
--secret TEXT Secret used for signing secure values, such as

→˓signed
cookies

--title TEXT Title for metadata
--license TEXT License label for metadata
--license_url TEXT License URL for metadata
--source TEXT Source label for metadata
--source_url TEXT Source URL for metadata
--about TEXT About label for metadata
--about_url TEXT About URL for metadata
-n, --name TEXT Application name to use when building
--service TEXT Cloud Run service to deploy (or over-write)
--spatialite Enable SpatialLite extension
--show-files Output the generated Dockerfile and metadata.json
--memory TEXT Memory to allocate in Cloud Run, e.g. 1Gi
--apt-get-install TEXT Additional packages to apt-get install
--help Show this message and exit.

Publishing to Heroku

To publish your data using Heroku, first create an account there and install and configure the Heroku CLI tool.

You can publish a database to Heroku using the following command:

datasette publish heroku mydatabase.db

This will output some details about the new deployment, including a URL like this one:

https://limitless-reef-88278.herokuapp.com/ deployed to Heroku

You can specify a custom app name by passing -n my-app-name to the publish command. This will also allow
you to overwrite an existing app.

$ datasette publish heroku --help

Usage: datasette publish heroku [OPTIONS] [FILES]...

Options:
-m, --metadata FILENAME Path to JSON/YAML file containing metadata to

→˓publish
--extra-options TEXT Extra options to pass to datasette serve
--branch TEXT Install datasette from a GitHub branch e.g. main
--template-dir DIRECTORY Path to directory containing custom templates

(continues on next page)
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(continued from previous page)

--plugins-dir DIRECTORY Path to directory containing custom plugins
--static MOUNT:DIRECTORY Serve static files from this directory at /MOUNT/...
--install TEXT Additional packages (e.g. plugins) to install
--plugin-secret <TEXT TEXT TEXT>...

Secrets to pass to plugins, e.g. --plugin-secret
datasette-auth-github client_id xxx

--version-note TEXT Additional note to show on /-/versions
--secret TEXT Secret used for signing secure values, such as

→˓signed
cookies

--title TEXT Title for metadata
--license TEXT License label for metadata
--license_url TEXT License URL for metadata
--source TEXT Source label for metadata
--source_url TEXT Source URL for metadata
--about TEXT About label for metadata
--about_url TEXT About URL for metadata
-n, --name TEXT Application name to use when deploying
--tar TEXT --tar option to pass to Heroku, e.g.

--tar=/usr/local/bin/gtar
--help Show this message and exit.

Publishing to Vercel

Vercel - previously known as Zeit Now - provides a layer over AWS Lambda to allow for quick, scale-to-zero deploy-
ment. You can deploy Datasette instances to Vercel using the datasette-publish-vercel plugin.

pip install datasette-publish-vercel
datasette publish vercel mydatabase.db --project my-database-project

Not every feature is supported: consult the datasette-publish-vercel README for more details.

Publishing to Fly

Fly is a competitively priced Docker-compatible hosting platform that supports running applications in globally dis-
tributed data centers close to your end users. You can deploy Datasette instances to Fly using the datasette-publish-fly
plugin.

pip install datasette-publish-fly
datasette publish fly mydatabase.db --app="my-app"

Consult the datasette-publish-fly README for more details.

Custom metadata and plugins

datasette publish accepts a number of additional options which can be used to further customize your
Datasette instance.

You can define your own Metadata and deploy that with your instance like so:

datasette publish cloudrun --service=my-service mydatabase.db -m metadata.json

If you just want to set the title, license or source information you can do that directly using extra options to
datasette publish:
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datasette publish cloudrun mydatabase.db --service=my-service \
--title="Title of my database" \
--source="Where the data originated" \
--source_url="http://www.example.com/"

You can also specify plugins you would like to install. For example, if you want to include the datasette-vega visual-
ization plugin you can use the following:

datasette publish cloudrun mydatabase.db --service=my-service --install=datasette-vega

If a plugin has any Secret configuration values you can use the --plugin-secret option to set those secrets at
publish time. For example, using Heroku with datasette-auth-github you might run the following command:

$ datasette publish heroku my_database.db \
--name my-heroku-app-demo \
--install=datasette-auth-github \
--plugin-secret datasette-auth-github client_id your_client_id \
--plugin-secret datasette-auth-github client_secret your_client_secret

1.5.2 datasette package

If you have docker installed (e.g. using Docker for Mac) you can use the datasette package command to create
a new Docker image in your local repository containing the datasette app bundled together with your selected SQLite
databases:

datasette package mydatabase.db

Here’s example output for the package command:

$ datasette package parlgov.db --extra-options="--setting sql_time_limit_ms 2500"
Sending build context to Docker daemon 4.459MB
Step 1/7 : FROM python:3
---> 79e1dc9af1c1

Step 2/7 : COPY . /app
---> Using cache
---> cd4ec67de656

Step 3/7 : WORKDIR /app
---> Using cache
---> 139699e91621

Step 4/7 : RUN pip install datasette
---> Using cache
---> 340efa82bfd7

Step 5/7 : RUN datasette inspect parlgov.db --inspect-file inspect-data.json
---> Using cache
---> 5fddbe990314

Step 6/7 : EXPOSE 8001
---> Using cache
---> 8e83844b0fed

Step 7/7 : CMD datasette serve parlgov.db --port 8001 --inspect-file inspect-data.
→˓json --setting sql_time_limit_ms 2500
---> Using cache
---> 1bd380ea8af3

Successfully built 1bd380ea8af3

You can now run the resulting container like so:
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docker run -p 8081:8001 1bd380ea8af3

This exposes port 8001 inside the container as port 8081 on your host machine, so you can access the application at
http://localhost:8081/

You can customize the port that is exposed by the countainer using the --port option:

datasette package mydatabase.db --port 8080

A full list of options can be seen by running datasette package --help:

$ datasette package --help

Usage: datasette package [OPTIONS] FILES...

Package specified SQLite files into a new datasette Docker container

Options:
-t, --tag TEXT Name for the resulting Docker container, can optionally

→˓use
name:tag format

-m, --metadata FILENAME Path to JSON/YAML file containing metadata to publish
--extra-options TEXT Extra options to pass to datasette serve
--branch TEXT Install datasette from a GitHub branch e.g. main
--template-dir DIRECTORY Path to directory containing custom templates
--plugins-dir DIRECTORY Path to directory containing custom plugins
--static MOUNT:DIRECTORY Serve static files from this directory at /MOUNT/...
--install TEXT Additional packages (e.g. plugins) to install
--spatialite Enable SpatialLite extension
--version-note TEXT Additional note to show on /-/versions
--secret TEXT Secret used for signing secure values, such as signed

cookies
-p, --port INTEGER RANGE Port to run the server on, defaults to 8001 [1<=x<=65535]
--title TEXT Title for metadata
--license TEXT License label for metadata
--license_url TEXT License URL for metadata
--source TEXT Source label for metadata
--source_url TEXT Source URL for metadata
--about TEXT About label for metadata
--about_url TEXT About URL for metadata
--help Show this message and exit.

1.6 Deploying Datasette

The quickest way to deploy a Datasette instance on the internet is to use the datasette publish command,
described in Publishing data. This can be used to quickly deploy Datasette to a number of hosting providers including
Heroku, Google Cloud Run and Vercel.

You can deploy Datasette to other hosting providers using the instructions on this page.

1.6.1 Deployment fundamentals

Datasette can be deployed as a single datasette process that listens on a port. Datasette is not designed to be run
as root, so that process should listen on a higher port such as port 8000.
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If you want to serve Datasette on port 80 (the HTTP default port) or port 443 (for HTTPS) you should run it behind a
proxy server, such as nginx, Apache or HAProxy. The proxy server can listen on port 80/443 and forward traffic on to
Datasette.

1.6.2 Running Datasette using systemd

You can run Datasette on Ubuntu or Debian systems using systemd.

First, ensure you have Python 3 and pip installed. On Ubuntu you can use sudo apt-get install python3
python3-pip.

You can install Datasette into a virtual environment, or you can install it system-wide. To install system-wide, use
sudo pip3 install datasette.

Now create a folder for your Datasette databases, for example using mkdir /home/ubuntu/datasette-root.

You can copy a test database into that folder like so:

cd /home/ubuntu/datasette-root
curl -O https://latest.datasette.io/fixtures.db

Create a file at /etc/systemd/system/datasette.service with the following contents:

[Unit]
Description=Datasette
After=network.target

[Service]
Type=simple
User=ubuntu
Environment=DATASETTE_SECRET=
WorkingDirectory=/home/ubuntu/datasette-root
ExecStart=datasette serve . -h 127.0.0.1 -p 8000
Restart=on-failure

[Install]
WantedBy=multi-user.target

Add a random value for the DATASETTE_SECRET - this will be used to sign Datasette cookies such as the CSRF
token cookie. You can generate a suitable value like so:

$ python3 -c 'import secrets; print(secrets.token_hex(32))'

This configuration will run Datasette against all database files contained in the /home/ubuntu/
datasette-root directory. If that directory contains a metadata.yml (or .json) file or a templates/
or plugins/ sub-directory those will automatically be loaded by Datasette - see Configuration directory mode for
details.

You can start the Datasette process running using the following:

sudo systemctl daemon-reload
sudo systemctl start datasette.service

You will need to restart the Datasette service after making changes to its metadata.json configuration or adding
a new database file to that directory. You can do that using:

sudo systemctl restart datasette.service
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Once the service has started you can confirm that Datasette is running on port 8000 like so:

curl 127.0.0.1:8000/-/versions.json
# Should output JSON showing the installed version

Datasette will not be accessible from outside the server because it is listening on 127.0.0.1. You can expose it by
instead listening on 0.0.0.0, but a better way is to set up a proxy such as nginx.

Ubuntu offer a tutorial on installing nginx. Once it is installed you can add configuration to proxy traffic through to
Datasette that looks like this:

server {
server_name mysubdomain.myhost.net;

location / {
proxy_pass http://127.0.0.1:8000/;
proxy_set_header Host $host;

}
}

1.6.3 Deploying using buildpacks

Some hosting providers such as Heroku, DigitalOcean App Platform and Scalingo support the Buildpacks standard
for deploying Python web applications.

Deploying Datasette on these platforms requires two files: requirements.txt and Procfile.

The requirements.txt file lets the platform know which Python packages should be installed. It should contain
datasette at a minimum, but can also list any Datasette plugins you wish to install - for example:

datasette
datasette-vega

The Procfile lets the hosting platform know how to run the command that serves web traffic. It should look like
this:

web: datasette . -h 0.0.0.0 -p $PORT --cors

The $PORT environment variable is provided by the hosting platform. --cors enables CORS requests from
JavaScript running on other websites to your domain - omit this if you don’t want to allow CORS. You can add
additional Datasette Settings options here too.

These two files should be enough to deploy Datasette on any host that supports buildpacks. Datasette will serve any
SQLite files that are included in the root directory of the application.

If you want to build SQLite files or download them as part of the deployment process you can do so using a bin/
post_compile file. For example, the following bin/post_compile will download an example database that
will then be served by Datasette:

wget https://fivethirtyeight.datasettes.com/fivethirtyeight.db

simonw/buildpack-datasette-demo is an example GitHub repository showing a Datasette configuration that can be
deployed to a buildpack-supporting host.

1.6.4 Running Datasette behind a proxy

You may wish to run Datasette behind an Apache or nginx proxy, using a path within your existing site.
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You can use the base_url configuration setting to tell Datasette to serve traffic with a specific URL prefix. For example,
you could run Datasette like this:

datasette my-database.db --setting base_url /my-datasette/ -p 8009

This will run Datasette with the following URLs:

• http://127.0.0.1:8009/my-datasette/ - the Datasette homepage

• http://127.0.0.1:8009/my-datasette/my-database - the page for the my-database.db
database

• http://127.0.0.1:8009/my-datasette/my-database/some_table - the page for the
some_table table

You can now set your nginx or Apache server to proxy the /my-datasette/ path to this Datasette instance.

Nginx proxy configuration

Here is an example of an nginx configuration file that will proxy traffic to Datasette:

daemon off;

events {
worker_connections 1024;

}
http {

server {
listen 80;
location /my-datasette {

proxy_pass http://127.0.0.1:8009/my-datasette;
proxy_set_header Host $host;

}
}

}

You can also use the --uds option to Datasette to listen on a Unix domain socket instead of a port, configuring the
nginx upstream proxy like this:

daemon off;
events {

worker_connections 1024;
}
http {

server {
listen 80;
location /my-datasette {

proxy_pass http://datasette/my-datasette;
proxy_set_header Host $host;

}
}
upstream datasette {
server unix:/tmp/datasette.sock;

}
}

Then run Datasette with datasette --uds /tmp/datasette.sock path/to/database.db
--setting base_url /my-datasette/.

20 Chapter 1. Contents

https://nginx.org/


Datasette Documentation

Apache proxy configuration

For Apache, you can use the ProxyPass directive. First make sure the following lines are uncommented:

LoadModule proxy_module lib/httpd/modules/mod_proxy.so
LoadModule proxy_http_module lib/httpd/modules/mod_proxy_http.so

Then add these directives to proxy traffic:

ProxyPass /my-datasette/ http://127.0.0.1:8009/my-datasette/
ProxyPreserveHost On

Using --uds you can use Unix domain sockets similiar to the nginx example:

ProxyPass /my-datasette/ unix:/tmp/datasette.sock|http://localhost/my-datasette/

The ProxyPreserveHost On directive ensures that the original Host: header from the incoming request is passed
through to Datasette. Datasette needs this to correctly assemble links to other pages using the .absolute_url(request,
path) method.

1.7 JSON API

Datasette provides a JSON API for your SQLite databases. Anything you can do through the Datasette user interface
can also be accessed as JSON via the API.

To access the API for a page, either click on the .json link on that page or edit the URL and add a .json extension
to it.

If you started Datasette with the --cors option, each JSON endpoint will be served with the following additional
HTTP header:

Access-Control-Allow-Origin: *

This means JavaScript running on any domain will be able to make cross-origin requests to fetch the data.

If you start Datasette without the --cors option only JavaScript running on the same domain as Datasette will be
able to access the API.

1.7.1 Different shapes

The default JSON representation of data from a SQLite table or custom query looks like this:

{
"database": "sf-trees",
"table": "qSpecies",
"columns": [

"id",
"value"

],
"rows": [

[
1,
"Myoporum laetum :: Myoporum"

],
[

(continues on next page)
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(continued from previous page)

2,
"Metrosideros excelsa :: New Zealand Xmas Tree"

],
[

3,
"Pinus radiata :: Monterey Pine"

]
],
"truncated": false,
"next": "100",
"next_url": "http://127.0.0.1:8001/sf-trees-02c8ef1/qSpecies.json?_next=100",
"query_ms": 1.9571781158447266

}

The columns key lists the columns that are being returned, and the rows key then returns a list of lists, each one
representing a row. The order of the values in each row corresponds to the columns.

The _shape parameter can be used to access alternative formats for the rows key which may be more convenient
for your application. There are three options:

• ?_shape=arrays - "rows" is the default option, shown above

• ?_shape=objects - "rows" is a list of JSON key/value objects

• ?_shape=array - an JSON array of objects

• ?_shape=array&_nl=on - a newline-separated list of JSON objects

• ?_shape=arrayfirst - a flat JSON array containing just the first value from each row

• ?_shape=object - a JSON object keyed using the primary keys of the rows

_shape=objects looks like this:

{
"database": "sf-trees",
...
"rows": [

{
"id": 1,
"value": "Myoporum laetum :: Myoporum"

},
{

"id": 2,
"value": "Metrosideros excelsa :: New Zealand Xmas Tree"

},
{

"id": 3,
"value": "Pinus radiata :: Monterey Pine"

}
]

}

_shape=array looks like this:

[
{

"id": 1,
"value": "Myoporum laetum :: Myoporum"

(continues on next page)
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(continued from previous page)

},
{

"id": 2,
"value": "Metrosideros excelsa :: New Zealand Xmas Tree"

},
{

"id": 3,
"value": "Pinus radiata :: Monterey Pine"

}
]

_shape=array&_nl=on looks like this:

{"id": 1, "value": "Myoporum laetum :: Myoporum"}
{"id": 2, "value": "Metrosideros excelsa :: New Zealand Xmas Tree"}
{"id": 3, "value": "Pinus radiata :: Monterey Pine"}

_shape=arrayfirst looks like this:

[1, 2, 3]

_shape=object looks like this:

{
"1": {

"id": 1,
"value": "Myoporum laetum :: Myoporum"

},
"2": {

"id": 2,
"value": "Metrosideros excelsa :: New Zealand Xmas Tree"

},
"3": {

"id": 3,
"value": "Pinus radiata :: Monterey Pine"

}
]

The object shape is only available for queries against tables - custom SQL queries and views do not have an obvious
primary key so cannot be returned using this format.

The object keys are always strings. If your table has a compound primary key, the object keys will be a comma-
separated string.

1.7.2 Pagination

The default JSON representation includes a "next_url" key which can be used to access the next page of results.
If that key is null or missing then it means you have reached the final page of results.

Other representations include pagination information in the link HTTP header. That header will look something like
this:

link: <https://latest.datasette.io/fixtures/sortable.json?_next=d%2Cv>; rel="next"

Here is an example Python function built using requests that returns a list of all of the paginated items from one of
these API endpoints:
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def paginate(url):
items = []
while url:

response = requests.get(url)
try:

url = response.links.get("next").get("url")
except AttributeError:

url = None
items.extend(response.json())

return items

1.7.3 Special JSON arguments

Every Datasette endpoint that can return JSON also accepts the following query string arguments:

?_shape=SHAPE The shape of the JSON to return, documented above.

?_nl=on When used with ?_shape=array produces newline-delimited JSON objects.

?_json=COLUMN1&_json=COLUMN2 If any of your SQLite columns contain JSON values, you can use one or
more _json= parameters to request that those columns be returned as regular JSON. Without this argument
those columns will be returned as JSON objects that have been double-encoded into a JSON string value.

Compare this query without the argument to this query using the argument

?_json_infinity=on If your data contains infinity or -infinity values, Datasette will replace them with None
when returning them as JSON. If you pass _json_infinity=1 Datasette will instead return them as
Infinity or -Infinity which is invalid JSON but can be processed by some custom JSON parsers.

?_timelimit=MS Sets a custom time limit for the query in ms. You can use this for optimistic queries where you
would like Datasette to give up if the query takes too long, for example if you want to implement autocomplete
search but only if it can be executed in less than 10ms.

?_ttl=SECONDS For how many seconds should this response be cached by HTTP proxies? Use ?_ttl=0 to
disable HTTP caching entirely for this request.

?_trace=1 Turns on tracing for this page: SQL queries executed during the request will be gathered and included
in the response, either in a new "_traces" key for JSON responses or at the bottom of the page if the response
is in HTML.

The structure of the data returned here should be considered highly unstable and very likely to change.

Only available if the trace_debug setting is enabled.

1.7.4 Table arguments

The Datasette table view takes a number of special query string arguments.

Column filter arguments

You can filter the data returned by the table based on column values using a query string argument.

?column__exact=value or ?_column=value Returns rows where the specified column exactly matches the
value.

?column__not=value Returns rows where the column does not match the value.
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?column__contains=value Rows where the string column contains the specified value (column like
"%value%" in SQL).

?column__endswith=value Rows where the string column ends with the specified value (column like
"%value" in SQL).

?column__startswith=value Rows where the string column starts with the specified value (column like
"value%" in SQL).

?column__gt=value Rows which are greater than the specified value.

?column__gte=value Rows which are greater than or equal to the specified value.

?column__lt=value Rows which are less than the specified value.

?column__lte=value Rows which are less than or equal to the specified value.

?column__like=value Match rows with a LIKE clause, case insensitive and with % as the wildcard character.

?column__notlike=value Match rows that do not match the provided LIKE clause.

?column__glob=value Similar to LIKE but uses Unix wildcard syntax and is case sensitive.

?column__in=value1,value2,value3 Rows where column matches any of the provided values.

You can use a comma separated string, or you can use a JSON array.

The JSON array option is useful if one of your matching values itself contains a comma:

?column__in=["value","value,with,commas"]

?column__notin=value1,value2,value3 Rows where column does not match any of the provided values.
The inverse of __in=. Also supports JSON arrays.

?column__arraycontains=value Works against columns that contain JSON arrays - matches if any of the
values in that array match the provided value.

This is only available if the json1 SQLite extension is enabled.

?column__arraynotcontains=value Works against columns that contain JSON arrays - matches if none of
the values in that array match the provided value.

This is only available if the json1 SQLite extension is enabled.

?column__date=value Column is a datestamp occurring on the specified YYYY-MM-DD date, e.g.
2018-01-02.

?column__isnull=1 Matches rows where the column is null.

?column__notnull=1 Matches rows where the column is not null.

?column__isblank=1 Matches rows where the column is blank, meaning null or the empty string.

?column__notblank=1 Matches rows where the column is not blank.

Special table arguments

?_col=COLUMN1&_col=COLUMN2 List specific columns to display. These will be shown along with any primary
keys.

?_nocol=COLUMN1&_nocol=COLUMN2 List specific columns to hide - any column not listed will be displayed.
Primary keys cannot be hidden.

?_labels=on/off Expand foreign key references for every possible column. See below.

?_label=COLUMN1&_label=COLUMN2 Expand foreign key references for one or more specified columns.
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?_size=1000 or ?_size=max Sets a custom page size. This cannot exceed the max_returned_rows limit
passed to datasette serve. Use max to get max_returned_rows.

?_sort=COLUMN Sorts the results by the specified column.

?_sort_desc=COLUMN Sorts the results by the specified column in descending order.

?_search=keywords For SQLite tables that have been configured for full-text search executes a search with the
provided keywords.

?_search_COLUMN=keywords Like _search= but allows you to specify the column to be searched, as opposed
to searching all columns that have been indexed by FTS.

?_searchmode=raw With this option, queries passed to ?_search= or ?_search_COLUMN= will not have
special characters escaped. This means you can make use of the full set of advanced SQLite FTS syntax, though
this could potentially result in errors if the wrong syntax is used.

?_where=SQL-fragment If the execute-sql permission is enabled, this parameter can be used to pass one or more
additional SQL fragments to be used in the WHERE clause of the SQL used to query the table.

This is particularly useful if you are building a JavaScript application that needs to do something creative but
still wants the other conveniences provided by the table view (such as faceting) and hence would like not to have
to construct a completely custom SQL query.

Some examples:

• facetable?_where=neighborhood like "%c%"&_where=city_id=3

• facetable?_where=city_id in (select id from facet_cities where name != "Detroit")

?_through={json} This can be used to filter rows via a join against another table.

The JSON parameter must include three keys: table, column and value.

table must be a table that the current table is related to via a foreign key relationship.

column must be a column in that other table.

value is the value that you want to match against.

For example, to filter roadside_attractions to just show the attractions that have a characteristic of
"museum", you would construct this JSON:

{
"table": "roadside_attraction_characteristics",
"column": "characteristic_id",
"value": "1"

}

As a URL, that looks like this:

?_through={%22table%22:%22roadside_attraction_characteristics%22,
%22column%22:%22characteristic_id%22,%22value%22:%221%22}

Here’s an example.

?_next=TOKEN Pagination by continuation token - pass the token that was returned in the "next" property by the
previous page.

?_facet=column Facet by column. Can be applied multiple times, see Facets. Only works on the default JSON
output, not on any of the custom shapes.

?_facet_size=100 Increase the number of facet results returned for each facet. Use ?_facet_size=max for
the maximum available size, determined by max_returned_rows.
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?_nofacet=1 Disable all facets and facet suggestions for this page, including any defined by Facets in meta-
data.json.

?_nocount=1 Disable the select count(*) query used on this page - a count of None will be returned in-
stead.

1.7.5 Expanding foreign key references

Datasette can detect foreign key relationships and resolve those references into labels. The HTML interface does this
by default for every detected foreign key column - you can turn that off using ?_labels=off.

You can request foreign keys be expanded in JSON using the _labels=on or _label=COLUMN special query
string parameters. Here’s what an expanded row looks like:

[
{

"rowid": 1,
"TreeID": 141565,
"qLegalStatus": {

"value": 1,
"label": "Permitted Site"

},
"qSpecies": {

"value": 1,
"label": "Myoporum laetum :: Myoporum"

},
"qAddress": "501X Baker St",
"SiteOrder": 1

}
]

The column in the foreign key table that is used for the label can be specified in metadata.json - see Specifying
the label column for a table.

1.8 Running SQL queries

Datasette treats SQLite database files as read-only and immutable. This means it is not possible to execute INSERT
or UPDATE statements using Datasette, which allows us to expose SELECT statements to the outside world without
needing to worry about SQL injection attacks.

The easiest way to execute custom SQL against Datasette is through the web UI. The database index page includes a
SQL editor that lets you run any SELECT query you like. You can also construct queries using the filter interface on
the tables page, then click "View and edit SQL" to open that query in the custom SQL editor.

Note that this interface is only available if the execute-sql permission is allowed.

Any Datasette SQL query is reflected in the URL of the page, allowing you to bookmark them, share them with others
and navigate through previous queries using your browser back button.

You can also retrieve the results of any query as JSON by adding .json to the base URL.

1.8.1 Named parameters

Datasette has special support for SQLite named parameters. Consider a SQL query like this:
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select * from Street_Tree_List
where "PermitNotes" like :notes
and "qSpecies" = :species

If you execute this query using the custom query editor, Datasette will extract the two named parameters and use them
to construct form fields for you to provide values.

You can also provide values for these fields by constructing a URL:

/mydatabase?sql=select...&species=44

SQLite string escaping rules will be applied to values passed using named parameters - they will be wrapped in quotes
and their content will be correctly escaped.

Datasette disallows custom SQL queries containing the string PRAGMA (with a small number of exceptions) as
SQLite pragma statements can be used to change database settings at runtime. If you need to include the string
"pragma" in a query you can do so safely using a named parameter.

1.8.2 Views

If you want to bundle some pre-written SQL queries with your Datasette-hosted database you can do so in two ways.
The first is to include SQL views in your database - Datasette will then list those views on your database index page.

The quickest way to create views is with the SQLite command-line interface:

$ sqlite3 sf-trees.db
SQLite version 3.19.3 2017-06-27 16:48:08
Enter ".help" for usage hints.
sqlite> CREATE VIEW demo_view AS select qSpecies from Street_Tree_List;
<CTRL+D>

1.8.3 Canned queries

As an alternative to adding views to your database, you can define canned queries inside your metadata.json file.
Here’s an example:

{
"databases": {

"sf-trees": {
"queries": {

"just_species": {
"sql": "select qSpecies from Street_Tree_List"

}
}

}
}

}

Then run Datasette like this:

datasette sf-trees.db -m metadata.json

Each canned query will be listed on the database index page, and will also get its own URL at:
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/database-name/canned-query-name

For the above example, that URL would be:

/sf-trees/just_species

You can optionally include "title" and "description" keys to show a title and description on the canned query
page. As with regular table metadata you can alternatively specify "description_html" to have your description
rendered as HTML (rather than having HTML special characters escaped).

Canned query parameters

Canned queries support named parameters, so if you include those in the SQL you will then be able to enter them
using the form fields on the canned query page or by adding them to the URL. This means canned queries can be used
to create custom JSON APIs based on a carefully designed SQL statement.

Here’s an example of a canned query with a named parameter:

select neighborhood, facet_cities.name, state
from facetable

join facet_cities on facetable.city_id = facet_cities.id
where neighborhood like '%' || :text || '%'
order by neighborhood;

In the canned query metadata (here Using YAML for metadata as metadata.yaml) it looks like this:

databases:
fixtures:
queries:

neighborhood_search:
sql: |-
select neighborhood, facet_cities.name, state
from facetable

join facet_cities on facetable.city_id = facet_cities.id
where neighborhood like '%' || :text || '%'
order by neighborhood

title: Search neighborhoods

Here’s the equivalent using JSON (as metadata.json):

{
"databases": {

"fixtures": {
"queries": {

"neighborhood_search": {
"sql": "select neighborhood, facet_cities.name, state\nfrom

→˓facetable\n join facet_cities on facetable.city_id = facet_cities.id\nwhere
→˓neighborhood like '%' || :text || '%'\norder by neighborhood",

"title": "Search neighborhoods"
}

}
}

}
}

Note that we are using SQLite string concatenation here - the || operator - to add wildcard % characters to the string
provided by the user.
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You can try this canned query out here: https://latest.datasette.io/fixtures/neighborhood_search?text=town

In this example the :text named parameter is automatically extracted from the query using a regular expression.

You can alternatively provide an explicit list of named parameters using the "params" key, like this:

databases:
fixtures:
queries:

neighborhood_search:
params:
- text
sql: |-
select neighborhood, facet_cities.name, state
from facetable

join facet_cities on facetable.city_id = facet_cities.id
where neighborhood like '%' || :text || '%'
order by neighborhood

title: Search neighborhoods

Setting a default fragment

Some plugins, such as datasette-vega, can be configured by including additional data in the fragment hash of the URL
- the bit that comes after a # symbol.

You can set a default fragment hash that will be included in the link to the canned query from the database index page
using the "fragment" key:

{
"databases": {

"fixtures": {
"queries": {

"neighborhood_search": {
"sql": "select neighborhood, facet_cities.name, state\nfrom

→˓facetable join facet_cities on facetable.city_id = facet_cities.id\nwhere
→˓neighborhood like '%' || :text || '%' order by neighborhood;",

"fragment": "fragment-goes-here"
}

}
}

}
}

See here for a demo of this in action.

Writable canned queries

Canned queries by default are read-only. You can use the "write": true key to indicate that a canned query can
write to the database.

See Controlling access to specific canned queries for details on how to add permission checks to canned queries, using
the "allow" key.

{
"databases": {

"mydatabase": {

(continues on next page)
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(continued from previous page)

"queries": {
"add_name": {

"sql": "INSERT INTO names (name) VALUES (:name)",
"write": true

}
}

}
}

}

This configuration will create a page at /mydatabase/add_name displaying a form with a name field. Submitting
that form will execute the configured INSERT query.

You can customize how Datasette represents success and errors using the following optional properties:

• on_success_message - the message shown when a query is successful

• on_success_redirect - the path or URL the user is redirected to on success

• on_error_message - the message shown when a query throws an error

• on_error_redirect - the path or URL the user is redirected to on error

For example:

{
"databases": {

"mydatabase": {
"queries": {

"add_name": {
"sql": "INSERT INTO names (name) VALUES (:name)",
"write": true,
"on_success_message": "Name inserted",
"on_success_redirect": "/mydatabase/names",
"on_error_message": "Name insert failed",
"on_error_redirect": "/mydatabase"

}
}

}
}

}

You can use "params" to explicitly list the named parameters that should be displayed as form fields - otherwise
they will be automatically detected.

You can pre-populate form fields when the page first loads using a query string, e.g. /mydatabase/add_name?
name=Prepopulated. The user will have to submit the form to execute the query.

Magic parameters

Named parameters that start with an underscore are special: they can be used to automatically add values created by
Datasette that are not contained in the incoming form fields or query string.

Available magic parameters are:

_actor_* - e.g. _actor_id, _actor_name Fields from the currently authenticated Actors.
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_header_* - e.g. _header_user_agent Header from the incoming HTTP request. The key should
be in lower case and with hyphens converted to underscores e.g. _header_user_agent or
_header_accept_language.

_cookie_* - e.g. _cookie_lang The value of the incoming cookie of that name.

_now_epoch The number of seconds since the Unix epoch.

_now_date_utc The date in UTC, e.g. 2020-06-01

_now_datetime_utc The ISO 8601 datetime in UTC, e.g. 2020-06-24T18:01:07Z

_random_chars_* - e.g. _random_chars_128 A random string of characters of the specified length.

Here’s an example configuration (this time using metadata.yaml since that provides better support for multi-line
SQL queries) that adds a message from the authenticated user, storing various pieces of additional metadata using
magic parameters:

databases:
mydatabase:
queries:
add_message:

allow:
id: "*"

sql: |-
INSERT INTO messages (

user_id, message, datetime
) VALUES (

:_actor_id, :message, :_now_datetime_utc
)

write: true

The form presented at /mydatabase/add_message will have just a field for message - the other parameters
will be populated by the magic parameter mechanism.

Additional custom magic parameters can be added by plugins using the register_magic_parameters(datasette) hook.

JSON API for writable canned queries

Writable canned queries can also be accessed using a JSON API. You can POST data to them using JSON, and you
can request that their response is returned to you as JSON.

To submit JSON to a writable canned query, encode key/value parameters as a JSON document:

POST /mydatabase/add_message

{"message": "Message goes here"}

You can also continue to submit data using regular form encoding, like so:

POST /mydatabase/add_message

message=Message+goes+here

There are three options for specifying that you would like the response to your request to return JSON data, as opposed
to an HTTP redirect to another page.

• Set an Accept: application/json header on your request

• Include ?_json=1 in the URL that you POST to
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• Include "_json": 1 in your JSON body, or &_json=1 in your form encoded body

The JSON response will look like this:

{
"ok": true,
"message": "Query executed, 1 row affected",
"redirect": "/data/add_name"

}

The "message" and "redirect" values here will take into account on_success_message,
on_success_redirect, on_error_message and on_error_redirect, if they have been set.

1.8.4 Pagination

Datasette’s default table pagination is designed to be extremely efficient. SQL OFFSET/LIMIT pagination can have a
significant performance penalty once you get into multiple thousands of rows, as each page still requires the database
to scan through every preceding row to find the correct offset.

When paginating through tables, Datasette instead orders the rows in the table by their primary key and performs a
WHERE clause against the last seen primary key for the previous page. For example:

select rowid, * from Tree_List where rowid > 200 order by rowid limit 101

This represents page three for this particular table, with a page size of 100.

Note that we request 101 items in the limit clause rather than 100. This allows us to detect if we are on the last page of
the results: if the query returns less than 101 rows we know we have reached the end of the pagination set. Datasette
will only return the first 100 rows - the 101st is used purely to detect if there should be another page.

Since the where clause acts against the index on the primary key, the query is extremely fast even for records that are
a long way into the overall pagination set.

1.8.5 Cross-database queries

SQLite has the ability to run queries that join across multiple databases. Up to ten databases can be attached to a single
SQLite connection and queried together.

Datasette can execute joins across multiple databases if it is started with the --crossdb option:

datasette fixtures.db extra_database.db --crossdb

If it is started in this way, the /_memory page can be used to execute queries that join across multiple databases.

References to tables in attached databases should be preceeded by the database name and a period.

For example, this query will show a list of tables across both of the above databases:

select
'fixtures' as database, *

from
[fixtures].sqlite_master

union
select

'extra_database' as database, *
from

[extra_database].sqlite_master
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Try that out here.

1.9 Authentication and permissions

Datasette does not require authentication by default. Any visitor to a Datasette instance can explore the full data and
execute read-only SQL queries.

Datasette’s plugin system can be used to add many different styles of authentication, such as user accounts, single
sign-on or API keys.

1.9.1 Actors

Through plugins, Datasette can support both authenticated users (with cookies) and authenticated API agents (via
authentication tokens). The word "actor" is used to cover both of these cases.

Every request to Datasette has an associated actor value, available in the code as request.actor. This can be
None for unauthenticated requests, or a JSON compatible Python dictionary for authenticated users or API agents.

The actor dictionary can be any shape - the design of that data structure is left up to the plugins. A useful convention
is to include an "id" string, as demonstrated by the "root" actor below.

Plugins can use the actor_from_request(datasette, request) hook to implement custom logic for authenticating an actor
based on the incoming HTTP request.

Using the "root" actor

Datasette currently leaves almost all forms of authentication to plugins - datasette-auth-github for example.

The one exception is the "root" account, which you can sign into while using Datasette on your local machine. This
provides access to a small number of debugging features.

To sign in as root, start Datasette using the --root command-line option, like this:

$ datasette --root
http://127.0.0.1:8001/-/auth-token?
→˓token=786fc524e0199d70dc9a581d851f466244e114ca92f33aa3b42a139e9388daa7
INFO: Started server process [25801]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://127.0.0.1:8001 (Press CTRL+C to quit)

The URL on the first line includes a one-use token which can be used to sign in as the "root" actor in your browser.
Click on that link and then visit http://127.0.0.1:8001/-/actor to confirm that you are authenticated as
an actor that looks like this:

{
"id": "root"

}

1.9.2 Permissions

Datasette has an extensive permissions system built-in, which can be further extended and customized by plugins.

The key question the permissions system answers is this:
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Is this actor allowed to perform this action, optionally against this particular resource?

Actors are described above.

An action is a string describing the action the actor would like to perfom. A full list is provided below - examples
include view-table and execute-sql.

A resource is the item the actor wishes to interact with - for example a specific database or table. Some actions, such
as permissions-debug, are not associated with a particular resource.

Datasette’s built-in view permissions (view-database, view-table etc) default to allow - unless you configure
additional permission rules unauthenticated users will be allowed to access content.

Permissions with potentially harmful effects should default to deny. Plugin authors should account for this when
designing new plugins - for example, the datasette-upload-csvs plugin defaults to deny so that installations don’t
accidentally allow unauthenticated users to create new tables by uploading a CSV file.

Defining permissions with "allow" blocks

The standard way to define permissions in Datasette is to use an "allow" block. This is a JSON document describing
which actors are allowed to perfom a permission.

The most basic form of allow block is this (allow demo, deny demo):

{
"allow": {

"id": "root"
}

}

This will match any actors with an "id" property of "root" - for example, an actor that looks like this:

{
"id": "root",
"name": "Root User"

}

An allow block can specify "deny all" using false (demo):

{
"allow": false

}

An "allow" of true allows all access (demo):

{
"allow": true

}

Allow keys can provide a list of values. These will match any actor that has any of those values (allow demo, deny
demo):

{
"allow": {

"id": ["simon", "cleopaws"]
}

}
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This will match any actor with an "id" of either "simon" or "cleopaws".

Actors can have properties that feature a list of values. These will be matched against the list of values in an allow
block. Consider the following actor:

{
"id": "simon",
"roles": ["staff", "developer"]

}

This allow block will provide access to any actor that has "developer" as one of their roles (allow demo, deny
demo):

{
"allow": {

"roles": ["developer"]
}

}

Note that "roles" is not a concept that is baked into Datasette - it’s a convention that plugins can choose to implement
and act on.

If you want to provide access to any actor with a value for a specific key, use "*". For example, to match any logged-in
user specify the following (allow demo, deny demo):

{
"allow": {

"id": "*"
}

}

You can specify that only unauthenticated actors (from anynomous HTTP requests) should be allowed access using
the special "unauthenticated": true key in an allow block (allow demo, deny demo):

{
"allow": {

"unauthenticated": true
}

}

Allow keys act as an "or" mechanism. An actor will be able to execute the query if any of their JSON properties match
any of the values in the corresponding lists in the allow block. The following block will allow users with either a
role of "ops" OR users who have an id of "simon" or "cleopaws":

{
"allow": {

"id": ["simon", "cleopaws"],
"role": "ops"

}
}

Demo for cleopaws, demo for ops role, demo for an actor matching neither rule.

The /-/allow-debug tool

The /-/allow-debug tool lets you try out different "action" blocks against different "actor" JSON objects.
You can try that out here: https://latest.datasette.io/-/allow-debug
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1.9.3 Configuring permissions in metadata.json

You can limit who is allowed to view different parts of your Datasette instance using "allow" keys in your Metadata
configuration.

You can control the following:

• Access to the entire Datasette instance

• Access to specific databases

• Access to specific tables and views

• Access to specific Canned queries

If a user cannot access a specific database, they will not be able to access tables, views or queries within that database.
If a user cannot access the instance they will not be able to access any of the databases, tables, views or queries.

Controlling access to an instance

Here’s how to restrict access to your entire Datasette instance to just the "id": "root" user:

{
"title": "My private Datasette instance",
"allow": {

"id": "root"
}

}

To deny access to all users, you can use "allow": false:

{
"title": "My entirely inaccessible instance",
"allow": false

}

One reason to do this is if you are using a Datasette plugin - such as datasette-permissions-sql - to control permissions
instead.

Controlling access to specific databases

To limit access to a specific private.db database to just authenticated users, use the "allow" block like this:

{
"databases": {

"private": {
"allow": {

"id": "*"
}

}
}

}

Controlling access to specific tables and views

To limit access to the users table in your bakery.db database:
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{
"databases": {

"bakery": {
"tables": {

"users": {
"allow": {

"id": "*"
}

}
}

}
}

}

This works for SQL views as well - you can list their names in the "tables" block above in the same way as regular
tables.

Warning: Restricting access to tables and views in this way will NOT prevent users from querying them using
arbitrary SQL queries, like this for example.

If you are restricting access to specific tables you should also use the "allow_sql" block to prevent users from
bypassing the limit with their own SQL queries - see Controlling the ability to execute arbitrary SQL.

Controlling access to specific canned queries

Canned queries allow you to configure named SQL queries in your metadata.json that can be executed by users.
These queries can be set up to both read and write to the database, so controlling who can execute them can be
important.

To limit access to the add_name canned query in your dogs.db database to just the root user:

{
"databases": {

"dogs": {
"queries": {

"add_name": {
"sql": "INSERT INTO names (name) VALUES (:name)",
"write": true,
"allow": {

"id": ["root"]
}

}
}

}
}

}

Controlling the ability to execute arbitrary SQL

The "allow_sql" block can be used to control who is allowed to execute arbitrary SQL queries, both using the
form on the database page e.g. https://latest.datasette.io/fixtures or by appending a ?_where= parameter to the table
page as seen on https://latest.datasette.io/fixtures/facetable?_where=city_id=1.

To enable just the root user to execute SQL for all databases in your instance, use the following:
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{
"allow_sql": {

"id": "root"
}

}

To limit this ability for just one specific database, use this:

{
"databases": {

"mydatabase": {
"allow_sql": {

"id": "root"
}

}
}

}

1.9.4 Checking permissions in plugins

Datasette plugins can check if an actor has permission to perform an action using the datasette.permission_allowed(...)
method.

Datasette core performs a number of permission checks, documented below. Plugins can implement the permis-
sion_allowed(datasette, actor, action, resource) plugin hook to participate in decisions about whether an actor should
be able to perform a specified action.

1.9.5 actor_matches_allow()

Plugins that wish to implement this same "allow" block permissions scheme can take advantage of the
datasette.utils.actor_matches_allow(actor, allow) function:

from datasette.utils import actor_matches_allow

actor_matches_allow({"id": "root"}, {"id": "*"})
# returns True

The currently authenticated actor is made available to plugins as request.actor.

1.9.6 The permissions debug tool

The debug tool at /-/permissions is only available to the authenticated root user (or any actor granted the
permissions-debug action according to a plugin).

It shows the thirty most recent permission checks that have been carried out by the Datasette instance.

This is designed to help administrators and plugin authors understand exactly how permission checks are being carried
out, in order to effectively configure Datasette’s permission system.

1.9.7 The ds_actor cookie

Datasette includes a default authentication plugin which looks for a signed ds_actor cookie containing a JSON
actor dictionary. This is how the root actor mechanism works.
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Authentication plugins can set signed ds_actor cookies themselves like so:

response = Response.redirect("/")
response.set_cookie("ds_actor", datasette.sign({

"a": {
"id": "cleopaws"

}
}, "actor"))

Note that you need to pass "actor" as the namespace to .sign(value, namespace="default").

The shape of data encoded in the cookie is as follows:

{
"a": {... actor ...}

}

Including an expiry time

ds_actor cookies can optionally include a signed expiry timestamp, after which the cookies will no longer be valid.
Authentication plugins may chose to use this mechanism to limit the lifetime of the cookie. For example, if a plugin
implements single-sign-on against another source it may decide to set short-lived cookies so that if the user is removed
from the SSO system their existing Datasette cookies will stop working shortly afterwards.

To include an expiry, add a "e" key to the cookie value containing a base62-encoded integer representing the times-
tamp when the cookie should expire. For example, here’s how to set a cookie that expires after 24 hours:

import time
import baseconv

expires_at = int(time.time()) + (24 * 60 * 60)

response = Response.redirect("/")
response.set_cookie("ds_actor", datasette.sign({

"a": {
"id": "cleopaws"

},
"e": baseconv.base62.encode(expires_at),

}, "actor"))

The resulting cookie will encode data that looks something like this:

{
"a": {

"id": "cleopaws"
},
"e": "1jjSji"

}

The /-/logout page

The page at /-/logout provides the ability to log out of a ds_actor cookie authentication session.
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1.9.8 Built-in permissions

This section lists all of the permission checks that are carried out by Datasette core, along with the resource if it
was passed.

view-instance

Top level permission - Actor is allowed to view any pages within this instance, starting at https://latest.datasette.io/

Default allow.

view-database

Actor is allowed to view a database page, e.g. https://latest.datasette.io/fixtures

resource - string The name of the database

Default allow.

view-database-download

Actor is allowed to download a database, e.g. https://latest.datasette.io/fixtures.db

resource - string The name of the database

Default allow.

view-table

Actor is allowed to view a table (or view) page, e.g. https://latest.datasette.io/fixtures/complex_foreign_keys

resource - tuple: (string, string) The name of the database, then the name of the table

Default allow.

view-query

Actor is allowed to view (and execute) a canned query page, e.g. https://latest.datasette.io/fixtures/pragma_cache_size
- this includes executing Writable canned queries.

resource - tuple: (string, string) The name of the database, then the name of the canned query

Default allow.

execute-sql

Actor is allowed to run arbitrary SQL queries against a specific database, e.g. https://latest.datasette.io/fixtures?sql=
select+100

resource - string The name of the database

Default allow.
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permissions-debug

Actor is allowed to view the /-/permissions debug page.

Default deny.

debug-menu

Controls if the various debug pages are displayed in the navigation menu.

Default deny.

1.10 Performance and caching

Datasette runs on top of SQLite, and SQLite has excellent performance. For small databases almost any query should
return in just a few milliseconds, and larger databases (100s of MBs or even GBs of data) should perform extremely
well provided your queries make sensible use of database indexes.

That said, there are a number of tricks you can use to improve Datasette’s performance.

1.10.1 Immutable mode

If you can be certain that a SQLite database file will not be changed by another process you can tell Datasette to open
that file in immutable mode.

Doing so will disable all locking and change detection, which can result in improved query performance.

This also enables further optimizations relating to HTTP caching, described below.

To open a file in immutable mode pass it to the datasette command using the -i option:

datasette -i data.db

When you open a file in immutable mode like this Datasette will also calculate and cache the row counts for each table
in that database when it first starts up, further improving performance.

1.10.2 Using "datasette inspect"

Counting the rows in a table can be a very expensive operation on larger databases. In immutable mode Datasette
performs this count only once and caches the results, but this can still cause server startup time to increase by several
seconds or more.

If you know that a database is never going to change you can precalculate the table row counts once and store then in
a JSON file, then use that file when you later start the server.

To create a JSON file containing the calculated row counts for a database, use the following:

datasette inspect data.db --inspect-file=counts.json

Then later you can start Datasette against the counts.json file and use it to skip the row counting step and speed
up server startup:

datasette -i data.db --inspect-file=counts.json
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You need to use the -i immutable mode against the databse file here or the counts from the JSON file will be ignored.

You will rarely need to use this optimization in every-day use, but several of the datasette publish commands
described in Publishing data use this optimization for better performance when deploying a database file to a hosting
provider.

1.10.3 HTTP caching

If your database is immutable and guaranteed not to change, you can gain major performance improvements from
Datasette by enabling HTTP caching.

This can work at two different levels. First, it can tell browsers to cache the results of queries and serve future requests
from the browser cache.

More significantly, it allows you to run Datasette behind a caching proxy such as Varnish or use a cache provided by
a hosted service such as Fastly or Cloudflare. This can provide incredible speed-ups since a query only needs to be
executed by Datasette the first time it is accessed - all subsequent hits can then be served by the cache.

Using a caching proxy in this way could enable a Datasette-backed visualization to serve thousands of hits a second
while running Datasette itself on extremely inexpensive hosting.

Datasette’s integration with HTTP caches can be enabled using a combination of configuration options and query
string arguments.

The default_cache_ttl setting sets the default HTTP cache TTL for all Datasette pages. This is 5 seconds unless you
change it - you can set it to 0 if you wish to disable HTTP caching entirely.

You can also change the cache timeout on a per-request basis using the ?_ttl=10 query string parameter. This can
be useful when you are working with the Datasette JSON API - you may decide that a specific query can be cached for
a longer time, or maybe you need to set ?_ttl=0 for some requests for example if you are running a SQL order
by random() query.

1.10.4 Hashed URL mode

When you open a database file in immutable mode using the -i option, Datasette calculates a SHA-256 hash of the
contents of that file on startup. This content hash can then optionally be used to create URLs that are guaranteed to
change if the contents of the file changes in the future. This results in URLs that can then be cached indefinitely by
both browsers and caching proxies - an enormous potential performance optimization.

You can enable these hashed URLs in two ways: using the hash_urls configuration setting (which affects all requests
to Datasette) or via the ?_hash=1 query string parameter (which only applies to the current request).

With hashed URLs enabled, any request to e.g. /mydatabase/mytable will 302 redirect to
mydatabase-455fe3a/mytable. The URL containing the hash will be served with a very long cache expire
header - configured using default_cache_ttl_hashed which defaults to 365 days.

Since these responses are cached for a long time, you may wish to build API clients against the non-hashed version of
these URLs. These 302 redirects are served extremely quickly, so this should still be a performant way to work against
the Datasette API.

If you run Datasette behind an HTTP/2 server push aware proxy such as Cloudflare Datasette will serve the 302
redirects in such a way that the redirected page will be efficiently "pushed" to the browser as part of the response,
without the browser needing to make a second HTTP request to fetch the redirected resource.

Note: Prior to Datasette 0.28 hashed URL mode was the default behaviour for Datasette, since all database files were
assumed to be immutable and unchanging. From 0.28 onwards the default has been to treat database files as mutable
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unless explicitly configured otherwise.

1.11 CSV export

Any Datasette table, view or custom SQL query can be exported as CSV.

To obtain the CSV representation of the table you are looking, click the "this data as CSV" link.

You can also use the advanced export form for more control over the resulting file, which looks like this and has the
following options:

• download file - instead of displaying CSV in your browser, this forces your browser to download the CSV to
your downloads directory.

• expand labels - if your table has any foreign key references this option will cause the CSV to gain additional
COLUMN_NAME_label columns with a label for each foreign key derived from the linked table. In this
example the city_id column is accompanied by a city_id_label column.

• stream all rows - by default CSV files only contain the first max_returned_rows records. This option will cause
Datasette to loop through every matching record and return them as a single CSV file.

You can try that out on https://latest.datasette.io/fixtures/facetable?_size=4

1.11.1 URL parameters

The following options can be used to customize the CSVs returned by Datasette.

?_header=off This removes the first row of the CSV file specifying the headings - only the row data will be
returned.

?_stream=on Stream all matching records, not just the first page of results. See below.

?_dl=on Causes Datasette to return a content-disposition: attachment;
filename="filename.csv" header.

1.11.2 Streaming all records

The stream all rows option is designed to be as efficient as possible - under the hood it takes advantage of Python 3
asyncio capabilities and Datasette’s efficient pagination to stream back the full CSV file.

Since databases can get pretty large, by default this option is capped at 100MB - if a table returns more than 100MB
of data the last line of the CSV will be a truncation error message.
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You can increase or remove this limit using the max_csv_mb config setting. You can also disable the CSV export
feature entirely using allow_csv_stream.

1.11.3 A note on URLs

The default URL for the CSV representation of a table is that table with .csv appended to it:

• https://latest.datasette.io/fixtures/facetable - HTML interface

• https://latest.datasette.io/fixtures/facetable.csv - CSV export

• https://latest.datasette.io/fixtures/facetable.json - JSON API

This pattern doesn’t work for tables with names that already end in .csv or .json. For those tables, you can instead
use the _format= query string parameter:

• https://latest.datasette.io/fixtures/table%2Fwith%2Fslashes.csv - HTML interface

• https://latest.datasette.io/fixtures/table%2Fwith%2Fslashes.csv?_format=csv - CSV export

• https://latest.datasette.io/fixtures/table%2Fwith%2Fslashes.csv?_format=json - JSON API

1.12 Binary data

SQLite tables can contain binary data in BLOB columns.

Datasette includes special handling for these binary values. The Datasette interface detects binary values and provides
a link to download their content, for example on https://latest.datasette.io/fixtures/binary_data

Binary data is represented in .json exports using Base64 encoding.

https://latest.datasette.io/fixtures/binary_data.json?_shape=array

[
{

"rowid": 1,
"data": {

"$base64": true,
"encoded": "FRwCx60F/g=="

}
},
{

"rowid": 2,
"data": {

"$base64": true,
"encoded": "FRwDx60F/g=="

}
},
{

"rowid": 3,

(continues on next page)
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(continued from previous page)

"data": null
}

]

1.12.1 Linking to binary downloads

The .blob output format is used to return binary data. It requires a _blob_column= query string argument
specifying which BLOB column should be downloaded, for example:

https://latest.datasette.io/fixtures/binary_data/1.blob?_blob_column=data

This output format can also be used to return binary data from an arbitrary SQL query. Since such queries do not
specify an exact row, an additional ?_blob_hash= parameter can be used to specify the SHA-256 hash of the value
that is being linked to.

Consider the query select data from binary_data - demonstrated here.

That page links to the binary value downloads. Those links look like this:

https://latest.datasette.io/fixtures.blob?sql=select+data+from+binary_data&_blob_column=data&_blob_hash=
f3088978da8f9aea479ffc7f631370b968d2e855eeb172bea7f6c7a04262bb6d

These .blob links are also returned in the .csv exports Datasette provides for binary tables and queries, since the
CSV format does not have a mechanism for representing binary data.

1.12.2 Binary plugins

Several Datasette plugins are available that change the way Datasette treats binary data.

• datasette-render-binary modifies Datasette’s default interface to show an automatic guess at what type of binary
data is being stored, along with a visual representation of the binary value that displays ASCII strings directly
in the interface.

• datasette-render-images detects common image formats and renders them as images directly in the Datasette
interface.

• datasette-media allows Datasette interfaces to be configured to serve binary files from configured SQL queries,
and includes the ability to resize images directly before serving them.

1.13 Facets

Datasette facets can be used to add a faceted browse interface to any database table. With facets, tables are displayed
along with a summary showing the most common values in specified columns. These values can be selected to further
filter the table.
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Facets can be specified in two ways: using query string parameters, or in metadata.json configuration for the
table.

1.13.1 Facets in query strings

To turn on faceting for specific columns on a Datasette table view, add one or more _facet=COLUMN parameters
to the URL. For example, if you want to turn on facets for the city_id and state columns, construct a URL that
looks like this:

/dbname/tablename?_facet=state&_facet=city_id

This works for both the HTML interface and the .json view. When enabled, facets will cause a facet_results
block to be added to the JSON output, looking something like this:

{
"state": {
"name": "state",
"results": [

{
"value": "CA",
"label": "CA",
"count": 10,
"toggle_url": "http://...?_facet=city_id&_facet=state&state=CA",
"selected": false

},
(continues on next page)
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(continued from previous page)

{
"value": "MI",
"label": "MI",
"count": 4,
"toggle_url": "http://...?_facet=city_id&_facet=state&state=MI",
"selected": false

},
{

"value": "MC",
"label": "MC",
"count": 1,
"toggle_url": "http://...?_facet=city_id&_facet=state&state=MC",
"selected": false

}
],
"truncated": false

}
"city_id": {
"name": "city_id",
"results": [

{
"value": 1,
"label": "San Francisco",
"count": 6,
"toggle_url": "http://...?_facet=city_id&_facet=state&city_id=1",
"selected": false

},
{

"value": 2,
"label": "Los Angeles",
"count": 4,
"toggle_url": "http://...?_facet=city_id&_facet=state&city_id=2",
"selected": false

},
{

"value": 3,
"label": "Detroit",
"count": 4,
"toggle_url": "http://...?_facet=city_id&_facet=state&city_id=3",
"selected": false

},
{

"value": 4,
"label": "Memnonia",
"count": 1,
"toggle_url": "http://...?_facet=city_id&_facet=state&city_id=4",
"selected": false

}
],
"truncated": false

}
}

If Datasette detects that a column is a foreign key, the "label" property will be automatically derived from the
detected label column on the referenced table.

The default number of facet results returned is 30, controlled by the default_facet_size setting. You can increase this
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on an individual page by adding ?_facet_size=100 to the query string, up to a maximum of max_returned_rows
(which defaults to 1000).

1.13.2 Facets in metadata.json

You can turn facets on by default for specific tables by adding them to a "facets" key in a Datasette Metadata file.

Here’s an example that turns on faceting by default for the qLegalStatus column in the Street_Tree_List
table in the sf-trees database:

{
"databases": {
"sf-trees": {

"tables": {
"Street_Tree_List": {
"facets": ["qLegalStatus"]

}
}

}
}

}

Facets defined in this way will always be shown in the interface and returned in the API, regardless of the _facet
arguments passed to the view.

1.13.3 Suggested facets

Datasette’s table UI will suggest facets for the user to apply, based on the following criteria:

For the currently filtered data are there any columns which, if applied as a facet...

• Will return 30 or less unique options

• Will return more than one unique option

• Will return less unique options than the total number of filtered rows

• And the query used to evaluate this criteria can be completed in under 50ms

That last point is particularly important: Datasette runs a query for every column that is displayed on a page, which
could get expensive - so to avoid slow load times it sets a time limit of just 50ms for each of those queries. This means
suggested facets are unlikely to appear for tables with millions of records in them.

1.13.4 Speeding up facets with indexes

The performance of facets can be greatly improved by adding indexes on the columns you wish to facet by. Adding
indexes can be performed using the sqlite3 command-line utility. Here’s how to add an index on the state
column in a table called Food_Trucks:

$ sqlite3 mydatabase.db
SQLite version 3.19.3 2017-06-27 16:48:08
Enter ".help" for usage hints.
sqlite> CREATE INDEX Food_Trucks_state ON Food_Trucks("state");
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1.13.5 Facet by JSON array

If your SQLite installation provides the json1 extension (you can check using /-/versions) Datasette will automati-
cally detect columns that contain JSON arrays of values and offer a faceting interface against those columns.

This is useful for modelling things like tags without needing to break them out into a new table.

Example here: latest.datasette.io/fixtures/facetable?_facet_array=tags

1.13.6 Facet by date

If Datasette finds any columns that contain dates in the first 100 values, it will offer a faceting interface against the
dates of those values. This works especially well against timestamp values such as 2019-03-01 12:44:00.

Example here: latest.datasette.io/fixtures/facetable?_facet_date=created

1.14 Full-text search

SQLite includes a powerful mechanism for enabling full-text search against SQLite records. Datasette can detect if a
table has had full-text search configured for it in the underlying database and display a search interface for filtering
that table.
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Datasette automatically detects which tables have been configured for full-text search.

1.14.1 The table page and table view API

Table views that support full-text search can be queried using the ?_search=TERMS query string parameter. This
will run the search against content from all of the columns that have been included in the index.

Try this example: fara.datasettes.com/fara/FARA_All_ShortForms?_search=manafort

SQLite full-text search supports wildcards. This means you can easily implement prefix auto-complete by including
an asterisk at the end of the search term - for example:

/dbname/tablename/?_search=rob*

This will return all records containing at least one word that starts with the letters rob.

You can also run searches against just the content of a specific named column by using _search_COLNAME=TERMS
- for example, this would search for just rows where the name column in the FTS index mentions Sarah:

/dbname/tablename/?_search_name=Sarah

1.14.2 Advanced SQLite search queries

SQLite full-text search includes support for a variety of advanced queries, including AND, OR, NOT and NEAR.

By default Datasette disables these features to ensure they do not cause errors or confusion for users who are not aware
of them. You can disable this escaping and use the advanced queries by adding &_searchmode=raw to the table
page query string.

If you want to enable these operators by default for a specific table, you can do so by adding "searchmode":
"raw" to the metadata configuration for that table, see Configuring full-text search for a table or view.

If that option has been specified in the table metadata but you want to over-ride it and return to the default behavior
you can append &_searchmode=escaped to the query string.

1.14.3 Configuring full-text search for a table or view

If a table has a corresponding FTS table set up using the content= argument to CREATE VIRTUAL TABLE shown
above, Datasette will detect it automatically and add a search interface to the table page for that table.

You can also manually configure which table should be used for full-text search using query string parameters or
Metadata. You can set the associated FTS table for a specific table and you can also set one for a view - if you do that,
the page for that SQL view will offer a search option.

Use ?_fts_table=x to over-ride the FTS table for a specific page. If the primary key was something other than
rowid you can use ?_fts_pk=col to set that as well. This is particularly useful for views, for example:

https://latest.datasette.io/fixtures/searchable_view?_fts_table=searchable_fts&_fts_pk=pk

The fts_table metadata property can be used to specify an associated FTS table. If the primary key column in
your table which was used to populate the FTS table is something other than rowid, you can specify the column to
use with the fts_pk property.

The "searchmode": "raw" property can be used to default the table to accepting SQLite advanced search
operators, as described in Advanced SQLite search queries.
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Here is an example which enables full-text search (with SQLite advanced search operators) for a display_ads view
which is defined against the ads table and hence needs to run FTS against the ads_fts table, using the id as the
primary key:

{
"databases": {

"russian-ads": {
"tables": {

"display_ads": {
"fts_table": "ads_fts",
"fts_pk": "id",
"search_mode": "raw"

}
}

}
}

}

1.14.4 Searches using custom SQL

You can include full-text search results in custom SQL queries. The general pattern with SQLite search is to run the
search as a sub-select that returns rowid values, then include those rowids in another part of the query.

You can see the syntax for a basic search by running that search on a table page and then clicking "View and edit SQL"
to see the underlying SQL. For example, consider this search for manafort is the US FARA database:

/fara/FARA_All_ShortForms?_search=manafort

If you click View and edit SQL you’ll see that the underlying SQL looks like this:

select
rowid,
Short_Form_Termination_Date,
Short_Form_Date,
Short_Form_Last_Name,
Short_Form_First_Name,
Registration_Number,
Registration_Date,
Registrant_Name,
Address_1,
Address_2,
City,
State,
Zip

from
FARA_All_ShortForms

where
rowid in (
select

rowid
from

FARA_All_ShortForms_fts
where

FARA_All_ShortForms_fts match escape_fts(:search)
)

order by
(continues on next page)
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rowid
limit

101

1.14.5 Enabling full-text search for a SQLite table

Datasette takes advantage of the external content mechanism in SQLite, which allows a full-text search virtual table to
be associated with the contents of another SQLite table.

To set up full-text search for a table, you need to do two things:

• Create a new FTS virtual table associated with your table

• Populate that FTS table with the data that you would like to be able to run searches against

Configuring FTS using sqlite-utils

sqlite-utils is a CLI utility and Python library for manipulating SQLite databases. You can use it from Python code to
configure FTS search, or you can achieve the same goal using the accompanying command-line tool.

Here’s how to use sqlite-utils to enable full-text search for an items table across the name and
description columns:

$ sqlite-utils enable-fts mydatabase.db items name description

Configuring FTS using csvs-to-sqlite

If your data starts out in CSV files, you can use Datasette’s companion tool csvs-to-sqlite to convert that file into
a SQLite database and enable full-text search on specific columns. For a file called items.csv where you want
full-text search to operate against the name and description columns you would run the following:

$ csvs-to-sqlite items.csv items.db -f name -f description

Configuring FTS by hand

We recommend using sqlite-utils, but if you want to hand-roll a SQLite full-text search table you can do so using the
following SQL.

To enable full-text search for a table called items that works against the name and description columns, you
would run this SQL to create a new items_fts FTS virtual table:

CREATE VIRTUAL TABLE "items_fts" USING FTS4 (
name,
description,
content="items"

);

This creates a set of tables to power full-text search against items. The new items_fts table will be detected by
Datasette as the fts_table for the items table.

Creating the table is not enough: you also need to populate it with a copy of the data that you wish to make searchable.
You can do that using the following SQL:
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INSERT INTO "items_fts" (rowid, name, description)
SELECT rowid, name, description FROM items;

If your table has columns that are foreign key references to other tables you can include that data in your full-text
search index using a join. Imagine the items table has a foreign key column called category_id which refers to
a categories table - you could create a full-text search table like this:

CREATE VIRTUAL TABLE "items_fts" USING FTS4 (
name,
description,
category_name,
content="items"

);

And then populate it like this:

INSERT INTO "items_fts" (rowid, name, description, category_name)
SELECT items.rowid,
items.name,
items.description,
categories.name
FROM items JOIN categories ON items.category_id=categories.id;

You can use this technique to populate the full-text search index from any combination of tables and joins that makes
sense for your project.

1.14.6 FTS versions

There are three different versions of the SQLite FTS module: FTS3, FTS4 and FTS5. You can tell which versions are
supported by your instance of Datasette by checking the /-/versions page.

FTS5 is the most advanced module but may not be available in the SQLite version that is bundled with your Python
installation. Most importantly, FTS5 is the only version that has the ability to order by search relevance without
needing extra code.

If you can’t be sure that FTS5 will be available, you should use FTS4.

1.15 SpatiaLite

The SpatiaLite module for SQLite adds features for handling geographic and spatial data. For an example of what you
can do with it, see the tutorial Building a location to time zone API with SpatiaLite, OpenStreetMap and Datasette.

To use it with Datasette, you need to install the mod_spatialite dynamic library. This can then be loaded into
Datasette using the --load-extension command-line option.

Datasette can look for SpatiaLite in common installation locations if you run it like this:

datasette --load-extension=spatialite

If SpatiaLite is in another location, use the full path to the extension instead:

datasette --load-extension=/usr/local/lib/mod_spatialite.dylib
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1.15.1 Installation

Installing SpatiaLite on OS X

The easiest way to install SpatiaLite on OS X is to use Homebrew.

brew update
brew install spatialite-tools

This will install the spatialite command-line tool and the mod_spatialite dynamic library.

You can now run Datasette like so:

datasette --load-extension=spatialite

Installing SpatiaLite on Linux

SpatiaLite is packaged for most Linux distributions.

apt install spatialite-bin libsqlite3-mod-spatialite

Depending on your distribution, you should be able to run Datasette something like this:

datasette --load-extension=/usr/lib/x86_64-linux-gnu/mod_spatialite.so

If you are unsure of the location of the module, try running locate mod_spatialite and see what comes back.

1.15.2 Spatial indexing latitude/longitude columns

Here’s a recipe for taking a table with existing latitude and longitude columns, adding a SpatiaLite POINT geometry
column to that table, populating the new column and then populating a spatial index:

import sqlite3
conn = sqlite3.connect('museums.db')
# Lead the spatialite extension:
conn.enable_load_extension(True)
conn.load_extension('/usr/local/lib/mod_spatialite.dylib')
# Initialize spatial metadata for this database:
conn.execute('select InitSpatialMetadata(1)')
# Add a geometry column called point_geom to our museums table:
conn.execute("SELECT AddGeometryColumn('museums', 'point_geom', 4326, 'POINT', 2);")
# Now update that geometry column with the lat/lon points
conn.execute('''

UPDATE museums SET
point_geom = GeomFromText('POINT('||"longitude"||' '||"latitude"||')',4326);

''')
# Now add a spatial index to that column
conn.execute('select CreateSpatialIndex("museums", "point_geom");')
# If you don't commit your changes will not be persisted:
conn.commit()
conn.close()
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1.15.3 Making use of a spatial index

SpatiaLite spatial indexes are R*Trees. They allow you to run efficient bounding box queries using a sub-select, with
a similar pattern to that used for Searches using custom SQL.

In the above example, the resulting index will be called idx_museums_point_geom. This takes the form of a
SQLite virtual table. You can inspect its contents using the following query:

select * from idx_museums_point_geom limit 10;

Here’s a live example: timezones-api.datasette.io/timezones/idx_timezones_Geometry

pkid xmin xmax ymin ymax
1 -8.601725578308105 -2.4930307865142822 4.162120819091797 10.74019718170166
2 -3.2607860565185547 1.27329421043396 4.539252281188965 11.174856185913086
3 32.997581481933594 47.98238754272461 3.3974475860595703 14.894054412841797
4 -8.66890811920166 11.997337341308594 18.9681453704834 37.296207427978516
5 36.43336486816406 43.300174713134766 12.354820251464844 18.070993423461914

You can now construct efficient bounding box queries that will make use of the index like this:

select * from museums where museums.rowid in (
SELECT pkid FROM idx_museums_point_geom
-- left-hand-edge of point > left-hand-edge of bbox (minx)
where xmin > :bbox_minx
-- right-hand-edge of point < right-hand-edge of bbox (maxx)
and xmax < :bbox_maxx
-- bottom-edge of point > bottom-edge of bbox (miny)
and ymin > :bbox_miny
-- top-edge of point < top-edge of bbox (maxy)
and ymax < :bbox_maxy

);

Spatial indexes can be created against polygon columns as well as point columns, in which case they will represent
the minimum bounding rectangle of that polygon. This is useful for accelerating within queries, as seen in the
Timezones API example.

1.15.4 Importing shapefiles into SpatiaLite

The shapefile format is a common format for distributing geospatial data. You can use the spatialite command-
line tool to create a new database table from a shapefile.

Try it now with the North America shapefile available from the University of North Carolina Global River Database
project. Download the file and unzip it (this will create files called narivs.dbf, narivs.prj, narivs.shp
and narivs.shx in the current directory), then run the following:

$ spatialite rivers-database.db
SpatiaLite version ..: 4.3.0a Supported Extensions:
...
spatialite> .loadshp narivs rivers CP1252 23032
========
Loading shapefile at 'narivs' into SQLite table 'rivers'
...
Inserted 467973 rows into 'rivers' from SHAPEFILE
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This will load the data from the narivs shapefile into a new database table called rivers.

Exit out of spatialite (using Ctrl+D) and run Datasette against your new database like this:

datasette rivers-database.db \
--load-extension=/usr/local/lib/mod_spatialite.dylib

If you browse to http://localhost:8001/rivers-database/rivers you will see the new table... but
the Geometry column will contain unreadable binary data (SpatiaLite uses a custom format based on WKB).

The easiest way to turn this into semi-readable data is to use the SpatiaLite AsGeoJSON function. Try the following
using the SQL query interface at http://localhost:8001/rivers-database:

select *, AsGeoJSON(Geometry) from rivers limit 10;

This will give you back an additional column of GeoJSON. You can copy and paste GeoJSON from this column into
the debugging tool at geojson.io to visualize it on a map.

To see a more interesting example, try ordering the records with the longest geometry first. Since there are 467,000
rows in the table you will first need to increase the SQL time limit imposed by Datasette:

datasette rivers-database.db \
--load-extension=/usr/local/lib/mod_spatialite.dylib \
--setting sql_time_limit_ms 10000

Now try the following query:

select *, AsGeoJSON(Geometry) from rivers
order by length(Geometry) desc limit 10;

1.15.5 Importing GeoJSON polygons using Shapely

Another common form of polygon data is the GeoJSON format. This can be imported into SpatiaLite directly, or by
using the Shapely Python library.

Who’s On First is an excellent source of openly licensed GeoJSON polygons. Let’s import the geographical polygon
for Wales. First, we can use the Who’s On First Spelunker tool to find the record for Wales:

spelunker.whosonfirst.org/id/404227475

That page includes a link to the GeoJSON record, which can be accessed here:

data.whosonfirst.org/404/227/475/404227475.geojson

Here’s Python code to create a SQLite database, enable SpatiaLite, create a places table and then add a record for
Wales:

import sqlite3
conn = sqlite3.connect('places.db')
# Enable SpatialLite extension
conn.enable_load_extension(True)
conn.load_extension('/usr/local/lib/mod_spatialite.dylib')
# Create the masic countries table
conn.execute('select InitSpatialMetadata(1)')
conn.execute('create table places (id integer primary key, name text);')
# Add a MULTIPOLYGON Geometry column
conn.execute("SELECT AddGeometryColumn('places', 'geom', 4326, 'MULTIPOLYGON', 2);")
# Add a spatial index against the new column

(continues on next page)
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(continued from previous page)

conn.execute("SELECT CreateSpatialIndex('places', 'geom');")
# Now populate the table
from shapely.geometry.multipolygon import MultiPolygon
from shapely.geometry import shape
import requests
geojson = requests.get('https://data.whosonfirst.org/404/227/475/404227475.geojson').
→˓json()
# Convert to "Well Known Text" format
wkt = shape(geojson['geometry']).wkt
# Insert and commit the record
conn.execute("INSERT INTO places (id, name, geom) VALUES(null, ?, GeomFromText(?,
→˓4326))", (

"Wales", wkt
))
conn.commit()

1.15.6 Querying polygons using within()

The within() SQL function can be used to check if a point is within a geometry:

select
name

from
places

where
within(GeomFromText('POINT(-3.1724366 51.4704448)'), places.geom);

The GeomFromText() function takes a string of well-known text. Note that the order used here is longitude
then latitude.

To run that same within() query in a way that benefits from the spatial index, use the following:

select
name

from
places

where
within(GeomFromText('POINT(-3.1724366 51.4704448)'), places.geom)
and rowid in (

SELECT pkid FROM idx_places_geom
where xmin < -3.1724366
and xmax > -3.1724366
and ymin < 51.4704448
and ymax > 51.4704448

);

1.16 Metadata

Data loves metadata. Any time you run Datasette you can optionally include a JSON file with metadata about your
databases and tables. Datasette will then display that information in the web UI.

Run Datasette like this:
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datasette database1.db database2.db --metadata metadata.json

Your metadata.json file can look something like this:

{
"title": "Custom title for your index page",
"description": "Some description text can go here",
"license": "ODbL",
"license_url": "https://opendatacommons.org/licenses/odbl/",
"source": "Original Data Source",
"source_url": "http://example.com/"

}

You can optionally use YAML instead of JSON, see Using YAML for metadata.

The above metadata will be displayed on the index page of your Datasette-powered site. The source and license
information will also be included in the footer of every page served by Datasette.

Any special HTML characters in description will be escaped. If you want to include HTML in your description,
you can use a description_html property instead.

1.16.1 Per-database and per-table metadata

Metadata at the top level of the JSON will be shown on the index page and in the footer on every page of the site. The
license and source is expected to apply to all of your data.

You can also provide metadata at the per-database or per-table level, like this:

{
"databases": {

"database1": {
"source": "Alternative source",
"source_url": "http://example.com/",
"tables": {

"example_table": {
"description_html": "Custom <em>table</em> description",
"license": "CC BY 3.0 US",
"license_url": "https://creativecommons.org/licenses/by/3.0/us/"

}
}

}
}

}

Each of the top-level metadata fields can be used at the database and table level.

1.16.2 Source, license and about

The three visible metadata fields you can apply to everything, specific databases or specific tables are source, license
and about. All three are optional.

source and source_url should be used to indicate where the underlying data came from.

license and license_url should be used to indicate the license under which the data can be used.

about and about_url can be used to link to further information about the project - an accompanying blog entry for
example.
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For each of these you can provide just the *_url field and Datasette will treat that as the default link label text and
display the URL directly on the page.

1.16.3 Specifying units for a column

Datasette supports attaching units to a column, which will be used when displaying values from that column. SI
prefixes will be used where appropriate.

Column units are configured in the metadata like so:

{
"databases": {

"database1": {
"tables": {

"example_table": {
"units": {

"column1": "metres",
"column2": "Hz"

}
}

}
}

}
}

Units are interpreted using Pint, and you can see the full list of available units in Pint’s unit registry. You can also add
custom units to the metadata, which will be registered with Pint:

{
"custom_units": [

"decibel = [] = dB"
]

}

1.16.4 Setting a default sort order

By default Datasette tables are sorted by primary key. You can over-ride this default for a specific table using the
"sort" or "sort_desc" metadata properties:

{
"databases": {

"mydatabase": {
"tables": {

"example_table": {
"sort": "created"

}
}

}
}

}

Or use "sort_desc" to sort in descending order:

{
"databases": {

(continues on next page)
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(continued from previous page)

"mydatabase": {
"tables": {

"example_table": {
"sort_desc": "created"

}
}

}
}

}

1.16.5 Setting a custom page size

Datasette defaults to displaing 100 rows per page, for both tables and views. You can change this default page size on
a per-table or per-view basis using the "size" key in metadata.json:

{
"databases": {

"mydatabase": {
"tables": {

"example_table": {
"size": 10

}
}

}
}

}

This size can still be over-ridden by passing e.g. ?_size=50 in the query string.

1.16.6 Setting which columns can be used for sorting

Datasette allows any column to be used for sorting by default. If you need to control which columns are available for
sorting you can do so using the optional sortable_columns key:

{
"databases": {

"database1": {
"tables": {

"example_table": {
"sortable_columns": [

"height",
"weight"

]
}

}
}

}
}

This will restrict sorting of example_table to just the height and weight columns.

You can also disable sorting entirely by setting "sortable_columns": []

You can use sortable_columns to enable specific sort orders for a view called name_of_view in the database
my_database like so:
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{
"databases": {

"my_database": {
"tables": {

"name_of_view": {
"sortable_columns": [

"clicks",
"impressions"

]
}

}
}

}
}

1.16.7 Specifying the label column for a table

Datasette’s HTML interface attempts to display foreign key references as labelled hyperlinks. By default, it looks for
referenced tables that only have two columns: a primary key column and one other. It assumes that the second column
should be used as the link label.

If your table has more than two columns you can specify which column should be used for the link label with the
label_column property:

{
"databases": {

"database1": {
"tables": {

"example_table": {
"label_column": "title"

}
}

}
}

}

1.16.8 Hiding tables

You can hide tables from the database listing view (in the same way that FTS and SpatiaLite tables are automatically
hidden) using "hidden": true:

{
"databases": {

"database1": {
"tables": {

"example_table": {
"hidden": true

}
}

}
}

}

62 Chapter 1. Contents



Datasette Documentation

1.16.9 Using YAML for metadata

Datasette accepts YAML as an alternative to JSON for your metadata configuration file. YAML is particularly useful
for including multiline HTML and SQL strings.

Here’s an example of a metadata.yml file, re-using an example from Canned queries.

title: Demonstrating Metadata from YAML
description_html: |-
<p>This description includes a long HTML string</p>
<ul>
<li>YAML is better for embedding HTML strings than JSON!</li>

</ul>
license: ODbL
license_url: https://opendatacommons.org/licenses/odbl/
databases:

fixtures:
tables:

no_primary_key:
hidden: true

queries:
neighborhood_search:

sql: |-
select neighborhood, facet_cities.name, state
from facetable join facet_cities on facetable.city_id = facet_cities.id
where neighborhood like '%' || :text || '%' order by neighborhood;

title: Search neighborhoods
description_html: |-
<p>This demonstrates <em>basic</em> LIKE search

The metadata.yml file is passed to Datasette using the same --metadata option:

datasette fixtures.db --metadata metadata.yml

1.17 Settings

1.17.1 Using –setting

Datasette supports a number of settings. These can be set using the --setting name value option to
datasette serve.

You can set multiple settings at once like this:

datasette mydatabase.db \
--setting default_page_size 50 \
--setting sql_time_limit_ms 3500 \
--setting max_returned_rows 2000

1.17.2 Configuration directory mode

Normally you configure Datasette using command-line options. For a Datasette instance with custom templates,
custom plugins, a static directory and several databases this can get quite verbose:
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$ datasette one.db two.db \
--metadata=metadata.json \
--template-dir=templates/ \
--plugins-dir=plugins \
--static css:css

As an alternative to this, you can run Datasette in configuration directory mode. Create a directory with the following
structure:

# In a directory called my-app:
my-app/one.db
my-app/two.db
my-app/metadata.json
my-app/templates/index.html
my-app/plugins/my_plugin.py
my-app/static/my.css

Now start Datasette by providing the path to that directory:

$ datasette my-app/

Datasette will detect the files in that directory and automatically configure itself using them. It will serve all *.db
files that it finds, will load metadata.json if it exists, and will load the templates, plugins and static
folders if they are present.

The files that can be included in this directory are as follows. All are optional.

• *.db - SQLite database files that will be served by Datasette

• metadata.json - Metadata for those databases - metadata.yaml or metadata.yml can be used as
well

• inspect-data.json - the result of running datasette inspect *.db
--inspect-file=inspect-data.json from the configuration directory - any database files listed here
will be treated as immutable, so they should not be changed while Datasette is running

• settings.json - settings that would normally be passed using --setting - here they should be stored as
a JSON object of key/value pairs

• templates/ - a directory containing Custom templates

• plugins/ - a directory containing plugins, see Writing one-off plugins

• static/ - a directory containing static files - these will be served from /static/filename.txt, see
Serving static files

1.17.3 Settings

The following options can be set using --setting name value, or by storing them in the settings.json
file for use with Configuration directory mode.

default_page_size

The default number of rows returned by the table page. You can over-ride this on a per-page basis using the ?
_size=80 query string parameter, provided you do not specify a value higher than the max_returned_rows
setting. You can set this default using --setting like so:
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datasette mydatabase.db --setting default_page_size 50

sql_time_limit_ms

By default, queries have a time limit of one second. If a query takes longer than this to run Datasette will terminate
the query and return an error.

If this time limit is too short for you, you can customize it using the sql_time_limit_ms limit - for example, to
increase it to 3.5 seconds:

datasette mydatabase.db --setting sql_time_limit_ms 3500

You can optionally set a lower time limit for an individual query using the ?_timelimit=100 query string argu-
ment:

/my-database/my-table?qSpecies=44&_timelimit=100

This would set the time limit to 100ms for that specific query. This feature is useful if you are working with databases
of unknown size and complexity - a query that might make perfect sense for a smaller table could take too long to
execute on a table with millions of rows. By setting custom time limits you can execute queries "optimistically" - e.g.
give me an exact count of rows matching this query but only if it takes less than 100ms to calculate.

max_returned_rows

Datasette returns a maximum of 1,000 rows of data at a time. If you execute a query that returns more than 1,000
rows, Datasette will return the first 1,000 and include a warning that the result set has been truncated. You can use
OFFSET/LIMIT or other methods in your SQL to implement pagination if you need to return more than 1,000 rows.

You can increase or decrease this limit like so:

datasette mydatabase.db --setting max_returned_rows 2000

num_sql_threads

Maximum number of threads in the thread pool Datasette uses to execute SQLite queries. Defaults to 3.

datasette mydatabase.db --setting num_sql_threads 10

allow_facet

Allow users to specify columns they would like to facet on using the ?_facet=COLNAME URL parameter to the
table view.

This is enabled by default. If disabled, facets will still be displayed if they have been specifically enabled in
metadata.json configuration for the table.

Here’s how to disable this feature:

datasette mydatabase.db --setting allow_facet off
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default_facet_size

The default number of unique rows returned by Facets is 30. You can customize it like this:

datasette mydatabase.db --setting default_facet_size 50

facet_time_limit_ms

This is the time limit Datasette allows for calculating a facet, which defaults to 200ms:

datasette mydatabase.db --setting facet_time_limit_ms 1000

facet_suggest_time_limit_ms

When Datasette calculates suggested facets it needs to run a SQL query for every column in your table. The default for
this time limit is 50ms to account for the fact that it needs to run once for every column. If the time limit is exceeded
the column will not be suggested as a facet.

You can increase this time limit like so:

datasette mydatabase.db --setting facet_suggest_time_limit_ms 500

suggest_facets

Should Datasette calculate suggested facets? On by default, turn this off like so:

datasette mydatabase.db --setting suggest_facets off

allow_download

Should users be able to download the original SQLite database using a link on the database index page? This is turned
on by default. However, databases can only be downloaded if they are served in immutable mode and not in-memory.
If downloading is unavailable for either of these reasons, the download link is hidden even if allow_download is
on. To disable database downloads, use the following:

datasette mydatabase.db --setting allow_download off

default_cache_ttl

Default HTTP caching max-age header in seconds, used for Cache-Control: max-age=X. Can be over-ridden
on a per-request basis using the ?_ttl= query string parameter. Set this to 0 to disable HTTP caching entirely.
Defaults to 5 seconds.

datasette mydatabase.db --setting default_cache_ttl 60
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default_cache_ttl_hashed

Default HTTP caching max-age for responses served using using the hashed-urls mechanism. Defaults to 365 days
(31536000 seconds).

datasette mydatabase.db --setting default_cache_ttl_hashed 10000

cache_size_kb

Sets the amount of memory SQLite uses for its per-connection cache, in KB.

datasette mydatabase.db --setting cache_size_kb 5000

allow_csv_stream

Enables the CSV export feature where an entire table (potentially hundreds of thousands of rows) can be exported as a
single CSV file. This is turned on by default - you can turn it off like this:

datasette mydatabase.db --setting allow_csv_stream off

max_csv_mb

The maximum size of CSV that can be exported, in megabytes. Defaults to 100MB. You can disable the limit entirely
by settings this to 0:

datasette mydatabase.db --setting max_csv_mb 0

truncate_cells_html

In the HTML table view, truncate any strings that are longer than this value. The full value will still be available in
CSV, JSON and on the individual row HTML page. Set this to 0 to disable truncation.

datasette mydatabase.db --setting truncate_cells_html 0

force_https_urls

Forces self-referential URLs in the JSON output to always use the https:// protocol. This is useful for cases where
the application itself is hosted using HTTP but is served to the outside world via a proxy that enables HTTPS.

datasette mydatabase.db --setting force_https_urls 1

hash_urls

When enabled, this setting causes Datasette to append a content hash of the database file to the URL path for every
table and query within that database.

When combined with far-future expire headers this ensures that queries can be cached forever, safe in the knowledge
that any modifications to the database itself will result in new, uncached URL paths.
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datasette mydatabase.db --setting hash_urls 1

template_debug

This setting enables template context debug mode, which is useful to help understand what variables are available to
custom templates when you are writing them.

Enable it like this:

datasette mydatabase.db --setting template_debug 1

Now you can add ?_context=1 or &_context=1 to any Datasette page to see the context that was passed to that
template.

Some examples:

• https://latest.datasette.io/?_context=1

• https://latest.datasette.io/fixtures?_context=1

• https://latest.datasette.io/fixtures/roadside_attractions?_context=1

trace_debug

This setting enables appending ?_trace=1 to any page in order to see the SQL queries and other trace information
that was used to generate that page.

Enable it like this:

datasette mydatabase.db --setting trace_debug 1

Some examples:

• https://latest.datasette.io/?_trace=1

• https://latest.datasette.io/fixtures/roadside_attractions?_trace=1

base_url

If you are running Datasette behind a proxy, it may be useful to change the root path used for the Datasette instance.

For example, if you are sending traffic from https://www.example.com/tools/datasette/ through to a
proxied Datasette instance you may wish Datasette to use /tools/datasette/ as its root URL.

You can do that like so:

datasette mydatabase.db --setting base_url /tools/datasette/

1.17.4 Configuring the secret

Datasette uses a secret string to sign secure values such as cookies.

If you do not provide a secret, Datasette will create one when it starts up. This secret will reset every time the Datasette
server restarts though, so things like authentication cookies will not stay valid between restarts.

You can pass a secret to Datasette in two ways: with the --secret command-line option or by setting a
DATASETTE_SECRET environment variable.
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$ datasette mydb.db --secret=SECRET_VALUE_HERE

Or:

$ export DATASETTE_SECRET=SECRET_VALUE_HERE
$ datasette mydb.db

One way to generate a secure random secret is to use Python like this:

$ python3 -c 'import secrets; print(secrets.token_hex(32))'
cdb19e94283a20f9d42cca50c5a4871c0aa07392db308755d60a1a5b9bb0fa52

Plugin authors make use of this signing mechanism in their plugins using .sign(value, namespace="default") and
.unsign(value, namespace="default").

1.17.5 Using secrets with datasette publish

The datasette publish and datasette package commands both generate a secret for you automatically when Datasette
is deployed.

This means that every time you deploy a new version of a Datasette project, a new secret will be generated. This will
cause signed cookies to become inalid on every fresh deploy.

You can fix this by creating a secret that will be used for multiple deploys and passing it using the --secret option:

datasette publish cloudrun mydb.db --service=my-service --
→˓secret=cdb19e94283a20f9d42cca5

1.18 Introspection

Datasette includes some pages and JSON API endpoints for introspecting the current instance. These can be used to
understand some of the internals of Datasette and to see how a particular instance has been configured.

Each of these pages can be viewed in your browser. Add .json to the URL to get back the contents as JSON.

1.18.1 /-/metadata

Shows the contents of the metadata.json file that was passed to datasette serve, if any. Metadata example:

{
"license": "CC Attribution 4.0 License",
"license_url": "http://creativecommons.org/licenses/by/4.0/",
"source": "fivethirtyeight/data on GitHub",
"source_url": "https://github.com/fivethirtyeight/data",
"title": "Five Thirty Eight",
"databases": {

}
}

1.18. Introspection 69

https://fivethirtyeight.datasettes.com/-/metadata


Datasette Documentation

1.18.2 /-/versions

Shows the version of Datasette, Python and SQLite. Versions example:

{
"datasette": {

"version": "0.21"
},
"python": {

"full": "3.6.5 (default, May 5 2018, 03:07:21) \n[GCC 6.3.0 20170516]",
"version": "3.6.5"

},
"sqlite": {

"extensions": {
"json1": null

},
"fts_versions": [

"FTS5",
"FTS4",
"FTS3"

],
"compile_options": [

"COMPILER=gcc-6.3.0 20170516",
"ENABLE_FTS3",
"ENABLE_FTS4",
"ENABLE_FTS5",
"ENABLE_JSON1",
"ENABLE_RTREE",
"THREADSAFE=1"

],
"version": "3.16.2"

}
}

1.18.3 /-/plugins

Shows a list of currently installed plugins and their versions. Plugins example:

[
{

"name": "datasette_cluster_map",
"static": true,
"templates": false,
"version": "0.10",
"hooks": ["extra_css_urls", "extra_js_urls", "extra_body_script"]

}
]

Add ?all=1 to include details of the default plugins baked into Datasette.

1.18.4 /-/settings

Shows the Settings for this instance of Datasette. Settings example:
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{
"default_facet_size": 30,
"default_page_size": 100,
"facet_suggest_time_limit_ms": 50,
"facet_time_limit_ms": 1000,
"max_returned_rows": 1000,
"sql_time_limit_ms": 1000

}

1.18.5 /-/databases

Shows currently attached databases. Databases example:

[
{

"hash": null,
"is_memory": false,
"is_mutable": true,
"name": "fixtures",
"path": "fixtures.db",
"size": 225280

}
]

1.18.6 /-/threads

Shows details of threads and asyncio tasks. Threads example:

{
"num_threads": 2,
"threads": [

{
"daemon": false,
"ident": 4759197120,
"name": "MainThread"

},
{

"daemon": true,
"ident": 123145319682048,
"name": "Thread-1"

},
],
"num_tasks": 3,
"tasks": [

"<Task pending coro=<RequestResponseCycle.run_asgi() running at uvicorn/
→˓protocols/http/httptools_impl.py:385> cb=[set.discard()]>",

"<Task pending coro=<Server.serve() running at uvicorn/main.py:361> wait_for=
→˓<Future pending cb=[<TaskWakeupMethWrapper object at 0x10365c3d0>()]> cb=[run_until_
→˓complete.<locals>.<lambda>()]>",

"<Task pending coro=<LifespanOn.main() running at uvicorn/lifespan/on.py:48>
→˓wait_for=<Future pending cb=[<TaskWakeupMethWrapper object at 0x10364f050>()]>>"

]
}
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1.18.7 /-/actor

Shows the currently authenticated actor. Useful for debugging Datasette authentication plugins.

{
"actor": {

"id": 1,
"username": "some-user"

}
}

1.18.8 /-/messages

The debug tool at /-/messages can be used to set flash messages to try out that feature. See .add_message(request,
message, message_type=datasette.INFO) for details of this feature.

1.19 Custom pages and templates

Datasette provides a number of ways of customizing the way data is displayed.

1.19.1 Custom CSS and JavaScript

When you launch Datasette, you can specify a custom metadata file like this:

datasette mydb.db --metadata metadata.json

Your metadata.json file can include links that look like this:

{
"extra_css_urls": [

"https://simonwillison.net/static/css/all.bf8cd891642c.css"
],
"extra_js_urls": [

"https://code.jquery.com/jquery-3.2.1.slim.min.js"
]

}

The extra CSS and JavaScript files will be linked in the <head> of every page:

<link rel="stylesheet" href="https://simonwillison.net/static/css/all.bf8cd891642c.css
→˓">
<script src="https://code.jquery.com/jquery-3.2.1.slim.min.js"></script>

You can also specify a SRI (subresource integrity hash) for these assets:

{
"extra_css_urls": [

{
"url": "https://simonwillison.net/static/css/all.bf8cd891642c.css",
"sri": "sha384-9qIZekWUyjCyDIf2YK1FRoKiPJq4PHt6tp/

→˓ulnuuyRBvazd0hG7pWbE99zvwSznI"
}

(continues on next page)
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],
"extra_js_urls": [

{
"url": "https://code.jquery.com/jquery-3.2.1.slim.min.js",
"sri": "sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g="

}
]

}

This will produce:

<link rel="stylesheet" href="https://simonwillison.net/static/css/all.bf8cd891642c.css
→˓"

integrity="sha384-9qIZekWUyjCyDIf2YK1FRoKiPJq4PHt6tp/ulnuuyRBvazd0hG7pWbE99zvwSznI
→˓"

crossorigin="anonymous">
<script src="https://code.jquery.com/jquery-3.2.1.slim.min.js"

integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g="
crossorigin="anonymous"></script>

Modern browsers will only execute the stylesheet or JavaScript if the SRI hash matches the content served. You can
generate hashes using www.srihash.org

Items in "extra_js_urls" can specify "module": true if they reference JavaScript that uses JavaScript
modules. This configuration:

{
"extra_js_urls": [

{
"url": "https://example.datasette.io/module.js",
"module": true

}
]

}

Will produce this HTML:

<script type="module" src="https://example.datasette.io/module.js"></script>

CSS classes on the <body>

Every default template includes CSS classes in the body designed to support custom styling.

The index template (the top level page at /) gets this:

<body class="index">

The database template (/dbname) gets this:

<body class="db db-dbname">

The custom SQL template (/dbname?sql=...) gets this:

<body class="query db-dbname">

A canned query template (/dbname/queryname) gets this:
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<body class="query db-dbname query-queryname">

The table template (/dbname/tablename) gets:

<body class="table db-dbname table-tablename">

The row template (/dbname/tablename/rowid) gets:

<body class="row db-dbname table-tablename">

The db-x and table-x classes use the database or table names themselves if they are valid CSS identifiers. If they
aren’t, we strip any invalid characters out and append a 6 character md5 digest of the original name, in order to ensure
that multiple tables which resolve to the same stripped character version still have different CSS classes.

Some examples:

"simple" => "simple"
"MixedCase" => "MixedCase"
"-no-leading-hyphens" => "no-leading-hyphens-65bea6"
"_no-leading-underscores" => "no-leading-underscores-b921bc"
"no spaces" => "no-spaces-7088d7"
"-" => "336d5e"
"no $ characters" => "no--characters-59e024"

<td> and <th> elements also get custom CSS classes reflecting the database column they are representing, for
example:

<table>
<thead>

<tr>
<th class="col-id" scope="col">id</th>
<th class="col-name" scope="col">name</th>

</tr>
</thead>
<tbody>

<tr>
<td class="col-id"><a href="...">1</a></td>
<td class="col-name">SMITH</td>

</tr>
</tbody>

</table>

Serving static files

Datasette can serve static files for you, using the --static option. Consider the following directory structure:

metadata.json
static/styles.css
static/app.js

You can start Datasette using --static static:static/ to serve those files from the /static/ mount point:

$ datasette -m metadata.json --static static:static/ --memory

The following URLs will now serve the content from those CSS and JS files:
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http://localhost:8001/static/styles.css
http://localhost:8001/static/app.js

You can reference those files from metadata.json like so:

{
"extra_css_urls": [

"/static/styles.css"
],
"extra_js_urls": [

"/static/app.js"
]

}

Publishing static assets

The datasette publish command can be used to publish your static assets, using the same syntax as above:

$ datasette publish cloudrun mydb.db --static static:static/

This will upload the contents of the static/ directory as part of the deployment, and configure Datasette to correctly
serve the assets.

1.19.2 Custom templates

By default, Datasette uses default templates that ship with the package.

You can over-ride these templates by specifying a custom --template-dir like this:

datasette mydb.db --template-dir=mytemplates/

Datasette will now first look for templates in that directory, and fall back on the defaults if no matches are found.

It is also possible to over-ride templates on a per-database, per-row or per- table basis.

The lookup rules Datasette uses are as follows:

Index page (/):
index.html

Database page (/mydatabase):
database-mydatabase.html
database.html

Custom query page (/mydatabase?sql=...):
query-mydatabase.html
query.html

Canned query page (/mydatabase/canned-query):
query-mydatabase-canned-query.html
query-mydatabase.html
query.html

Table page (/mydatabase/mytable):
table-mydatabase-mytable.html

(continues on next page)
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table.html

Row page (/mydatabase/mytable/id):
row-mydatabase-mytable.html
row.html

Table of rows and columns include on table page:
_table-table-mydatabase-mytable.html
_table-mydatabase-mytable.html
_table.html

Table of rows and columns include on row page:
_table-row-mydatabase-mytable.html
_table-mydatabase-mytable.html
_table.html

If a table name has spaces or other unexpected characters in it, the template filename will follow the same rules as our
custom <body> CSS classes - for example, a table called "Food Trucks" will attempt to load the following templates:

table-mydatabase-Food-Trucks-399138.html
table.html

You can find out which templates were considered for a specific page by viewing source on that page and looking for
an HTML comment at the bottom. The comment will look something like this:

<!-- Templates considered: *query-mydb-tz.html, query-mydb.html, query.html -->

This example is from the canned query page for a query called "tz" in the database called "mydb". The asterisk
shows which template was selected - so in this case, Datasette found a template file called query-mydb-tz.html
and used that - but if that template had not been found, it would have tried for query-mydb.html or the default
query.html.

It is possible to extend the default templates using Jinja template inheritance. If you want to customize EVERY row
template with some additional content you can do so by creating a row.html template like this:

{% extends "default:row.html" %}

{% block content %}
<h1>EXTRA HTML AT THE TOP OF THE CONTENT BLOCK</h1>
<p>This line renders the original block:</p>
{{ super() }}
{% endblock %}

Note the default:row.html template name, which ensures Jinja will inherit from the default template.

The _table.html template is included by both the row and the table pages, and a list of rows. The default _table.
html template renders them as an HTML template and can be seen here.

You can provide a custom template that applies to all of your databases and tables, or you can provide custom templates
for specific tables using the template naming scheme described above.

If you want to present your data in a format other than an HTML table, you can do so by looping through
display_rows in your own _table.html template. You can use {{ row["column_name"] }} to out-
put the raw value of a specific column.

If you want to output the rendered HTML version of a column, including any links to foreign keys, you can use {{
row.display("column_name") }}.
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Here is an example of a custom _table.html template:

{% for row in display_rows %}
<div>

<h2>{{ row["title"] }}</h2>
<p>{{ row["description"] }}<lp>
<p>Category: {{ row.display("category_id") }}</p>

</div>
{% endfor %}

1.19.3 Custom pages

You can add templated pages to your Datasette instance by creating HTML files in a pages directory within your
templates directory.

For example, to add a custom page that is served at http://localhost/about you would create a file in
templates/pages/about.html, then start Datasette like this:

$ datasette mydb.db --template-dir=templates/

You can nest directories within pages to create a nested structure. To create a http://localhost:8001/
about/map page you would create templates/pages/about/map.html.

Path parameters for pages

You can define custom pages that match multiple paths by creating files with {variable} definitions in their file-
names.

For example, to capture any request to a URL matching /about/*, you would create a template in the following
location:

templates/pages/about/{slug}.html

A hit to /about/news would render that template and pass in a variable called slug with a value of "news".

If you use this mechanism don’t forget to return a 404 if the referenced content could not be found. You can do this
using {{ raise_404() }} described below.

Templates defined using custom page routes work particularly well with the sql() template function from datasette-
template-sql or the graphql() template function from datasette-graphql.

Custom headers and status codes

Custom pages default to being served with a content-type of text/html; charset=utf-8 and a 200 status
code. You can change these by calling a custom function from within your template.

For example, to serve a custom page with a 418 I'm a teapot HTTP status code, create a file in pages/
teapot.html containing the following:

{{ custom_status(418) }}
<html>
<head><title>Teapot</title></head>
<body>
I'm a teapot
</body>
</html>
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To serve a custom HTTP header, add a custom_header(name, value) function call. For example:

{{ custom_status(418) }}
{{ custom_header("x-teapot", "I am") }}
<html>
<head><title>Teapot</title></head>
<body>
I'm a teapot
</body>
</html>

You can verify this is working using curl like this:

$ curl -I 'http://127.0.0.1:8001/teapot'
HTTP/1.1 418
date: Sun, 26 Apr 2020 18:38:30 GMT
server: uvicorn
x-teapot: I am
content-type: text/html; charset=utf-8

Returning 404s

To indicate that content could not be found and display the default 404 page you can use the raise_404(message)
function:

{% if not rows %}
{{ raise_404("Content not found") }}

{% endif %}

If you call raise_404() the other content in your template will be ignored.

Custom redirects

You can use the custom_redirect(location) function to redirect users to another page, for example in a file
called pages/datasette.html:

{{ custom_redirect("https://github.com/simonw/datasette") }}

Now requests to http://localhost:8001/datasette will result in a redirect.

These redirects are served with a 301 Found status code by default. You can send a 301 Moved Permanently
code by passing 301 as the second argument to the function:

{{ custom_redirect("https://github.com/simonw/datasette", 301) }}

1.19.4 Custom error pages

Datasette returns an error page if an unexpected error occurs, access is forbidden or content cannot be found.

You can customize the response returned for these errors by providing a custom error page template.

Content not found errors use a 404.html template. Access denied errors use 403.html. Invalid input errors use
400.html. Unexpected errors of other kinds use 500.html.
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If a template for the specific error code is not found a template called error.html will be used instead. If you do
not provide that template Datasette’s default error.html template will be used.

The error template will be passed the following context:

status - integer The integer HTTP status code, e.g. 404, 500, 403, 400.

error - string Details of the specific error, usually a full sentence.

title - string or None A title for the page representing the class of error. This is often None for errors that do not
provide a title separate from their error message.

1.20 Plugins

Datasette’s plugin system allows additional features to be implemented as Python code (or front-end JavaScript) which
can be wrapped up in a separate Python package. The underlying mechanism uses pluggy.

See the Datasette plugins directory for a list of existing plugins, or take a look at the datasette-plugin topic on GitHub.

Things you can do with plugins include:

• Add visualizations to Datasette, for example datasette-cluster-map and datasette-vega.

• Make new custom SQL functions available for use within Datasette, for example datasette-haversine and
datasette-jellyfish.

• Define custom output formats with custom extensions, for example datasette-atom and datasette-ics.

• Add template functions that can be called within your Jinja custom templates, for example datasette-render-
markdown.

• Customize how database values are rendered in the Datasette interface, for example datasette-render-binary and
datasette-pretty-json.

• Customize how Datasette’s authentication and permissions systems work, for example datasette-auth-tokens and
datasette-permissions-sql.

1.20.1 Installing plugins

If a plugin has been packaged for distribution using setuptools you can use the plugin by installing it alongside
Datasette in the same virtual environment or Docker container.

You can install plugins using the datasette install command:

datasette install datasette-vega

You can uninstall plugins with datasette uninstall:

datasette uninstall datasette-vega

You can upgrade plugins with datasette install --upgrade or datasette install -U:

datasette install -U datasette-vega

This command can also be used to upgrade Datasette itself to the latest released version:

datasette install -U datasette
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These commands are thin wrappers around pip install and pip uninstall, which ensure they run pip in
the same virtual environment as Datasette itself.

One-off plugins using –plugins-dir

You can also define one-off per-project plugins by saving them as plugin_name.py functions in a plugins/
folder and then passing that folder to datasette using the --plugins-dir option:

datasette mydb.db --plugins-dir=plugins/

Deploying plugins using datasette publish

The datasette publish and datasette package commands both take an optional --install argument.
You can use this one or more times to tell Datasette to pip install specific plugins as part of the process:

datasette publish cloudrun mydb.db --install=datasette-vega

You can use the name of a package on PyPI or any of the other valid arguments to pip install such as a URL to
a .zip file:

datasette publish cloudrun mydb.db \
--install=https://url-to-my-package.zip

1.20.2 Seeing what plugins are installed

You can see a list of installed plugins by navigating to the /-/plugins page of your Datasette instance - for example:
https://fivethirtyeight.datasettes.com/-/plugins

You can also use the datasette plugins command:

$ datasette plugins
[

{
"name": "datasette_json_html",
"static": false,
"templates": false,
"version": "0.4.0"

}
]

If you run datasette plugins --all it will include default plugins that ship as part of Datasette:

$ datasette plugins --all
[

{
"name": "datasette.sql_functions",
"static": false,
"templates": false,
"version": null

},
{

"name": "datasette.publish.cloudrun",
"static": false,

(continues on next page)
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"templates": false,
"version": null

},
{

"name": "datasette.facets",
"static": false,
"templates": false,
"version": null

},
{

"name": "datasette.publish.heroku",
"static": false,
"templates": false,
"version": null

}
]

You can add the --plugins-dir= option to include any plugins found in that directory.

1.20.3 Plugin configuration

Plugins can have their own configuration, embedded in a Metadata file. Configuration options for plugins live within
a "plugins" key in that file, which can be included at the root, database or table level.

Here is an example of some plugin configuration for a specific table:

{
"databases": {

"sf-trees": {
"tables": {

"Street_Tree_List": {
"plugins": {

"datasette-cluster-map": {
"latitude_column": "lat",
"longitude_column": "lng"

}
}

}
}

}
}

}

This tells the datasette-cluster-map column which latitude and longitude columns should be used for a table
called Street_Tree_List inside a database file called sf-trees.db.

Secret configuration values

Any values embedded in metadata.json will be visible to anyone who views the /-/metadata page of your
Datasette instance. Some plugins may need configuration that should stay secret - API keys for example. There are
two ways in which you can store secret configuration values.

As environment variables. If your secret lives in an environment variable that is available to the Datasette process,
you can indicate that the configuration value should be read from that environment variable like so:
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{
"plugins": {

"datasette-auth-github": {
"client_secret": {

"$env": "GITHUB_CLIENT_SECRET"
}

}
}

}

As values in separate files. Your secrets can also live in files on disk. To specify a secret should be read from a file,
provide the full file path like this:

{
"plugins": {

"datasette-auth-github": {
"client_secret": {

"$file": "/secrets/client-secret"
}

}
}

}

If you are publishing your data using the datasette publish family of commands, you can use the --plugin-secret
option to set these secrets at publish time. For example, using Heroku you might run the following command:

$ datasette publish heroku my_database.db \
--name my-heroku-app-demo \
--install=datasette-auth-github \
--plugin-secret datasette-auth-github client_id your_client_id \
--plugin-secret datasette-auth-github client_secret your_client_secret

This will set the necessary environment variables and add the following to the deployed metadata.json:

{
"plugins": {

"datasette-auth-github": {
"client_id": {

"$env": "DATASETTE_AUTH_GITHUB_CLIENT_ID"
},
"client_secret": {

"$env": "DATASETTE_AUTH_GITHUB_CLIENT_SECRET"
}

}
}

}

1.21 Writing plugins

You can write one-off plugins that apply to just one Datasette instance, or you can write plugins which can be installed
using pip and can be shipped to the Python Package Index (PyPI) for other people to install.

Want to start by looking at an example? The Datasette plugins directory lists more than 50 open source plugins with
code you can explore. The plugin hooks page includes links to example plugins for each of the documented hooks.
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1.21.1 Writing one-off plugins

The quickest way to start writing a plugin is to create a my_plugin.py file and drop it into your plugins/
directory. Here is an example plugin, which adds a new custom SQL function called hello_world() which takes
no arguments and returns the string Hello world!.

from datasette import hookimpl

@hookimpl
def prepare_connection(conn):

conn.create_function('hello_world', 0, lambda: 'Hello world!')

If you save this in plugins/my_plugin.py you can then start Datasette like this:

datasette serve mydb.db --plugins-dir=plugins/

Now you can navigate to http://localhost:8001/mydb and run this SQL:

select hello_world();

To see the output of your plugin.

1.21.2 Starting an installable plugin using cookiecutter

Plugins that can be installed should be written as Python packages using a setup.py file.

The quickest way to start writing one an installable plugin is to use the datasette-plugin cookiecutter template. This
creates a new plugin structure for you complete with an example test and GitHub Actions workflows for testing and
publishing your plugin.

Install cookiecutter and then run this command to start building a plugin using the template:

cookiecutter gh:simonw/datasette-plugin

Read a cookiecutter template for writing Datasette plugins for more information about this template.

1.21.3 Packaging a plugin

Plugins can be packaged using Python setuptools. You can see an example of a packaged plugin at https://github.com/
simonw/datasette-plugin-demos

The example consists of two files: a setup.py file that defines the plugin:

from setuptools import setup

VERSION = '0.1'

setup(
name='datasette-plugin-demos',
description='Examples of plugins for Datasette',
author='Simon Willison',
url='https://github.com/simonw/datasette-plugin-demos',
license='Apache License, Version 2.0',
version=VERSION,
py_modules=['datasette_plugin_demos'],
entry_points={

(continues on next page)
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'datasette': [
'plugin_demos = datasette_plugin_demos'

]
},
install_requires=['datasette']

)

And a Python module file, datasette_plugin_demos.py, that implements the plugin:

from datasette import hookimpl
import random

@hookimpl
def prepare_jinja2_environment(env):

env.filters['uppercase'] = lambda u: u.upper()

@hookimpl
def prepare_connection(conn):

conn.create_function('random_integer', 2, random.randint)

Having built a plugin in this way you can turn it into an installable package using the following command:

python3 setup.py sdist

This will create a .tar.gz file in the dist/ directory.

You can then install your new plugin into a Datasette virtual environment or Docker container using pip:

pip install datasette-plugin-demos-0.1.tar.gz

To learn how to upload your plugin to PyPI for use by other people, read the PyPA guide to Packaging and distributing
projects.

1.21.4 Static assets

If your plugin has a static/ directory, Datasette will automatically configure itself to serve those static assets from
the following path:

/-/static-plugins/NAME_OF_PLUGIN_PACKAGE/yourfile.js

Use the datasette.urls.static_plugins(plugin_name, path) method to generate URLs to that as-
set that take the base_url setting into account, see datasette.urls.

To bundle the static assets for a plugin in the package that you publish to PyPI, add the following to the plugin’s
setup.py:

package_data={
'datasette_plugin_name': [

'static/plugin.js',
],

},

Where datasette_plugin_name is the name of the plugin package (note that it uses underscores, not hyphens)
and static/plugin.js is the path within that package to the static file.
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datasette-cluster-map is a useful example of a plugin that includes packaged static assets in this way.

1.21.5 Custom templates

If your plugin has a templates/ directory, Datasette will attempt to load templates from that directory before it
uses its own default templates.

The priority order for template loading is:

• templates from the --template-dir argument, if specified

• templates from the templates/ directory in any installed plugins

• default templates that ship with Datasette

See Custom pages and templates for more details on how to write custom templates, including which filenames to use
to customize which parts of the Datasette UI.

Templates should be bundled for distribution using the same package_data mechanism in setup.py described
for static assets above, for example:

package_data={
'datasette_plugin_name': [

'templates/my_template.html',
],

},

You can also use wildcards here such as templates/*.html. See datasette-edit-schema for an example of this
pattern.

1.21.6 Writing plugins that accept configuration

When you are writing plugins, you can access plugin configuration like this using the datasette
plugin_config() method. If you know you need plugin configuration for a specific table, you can access it
like this:

plugin_config = datasette.plugin_config(
"datasette-cluster-map", database="sf-trees", table="Street_Tree_List"

)

This will return the {"latitude_column": "lat", "longitude_column": "lng"} in the above
example.

If it cannot find the requested configuration at the table layer, it will fall back to the database layer and then the root
layer. For example, a user may have set the plugin configuration option like so:

{
"databases: {

"sf-trees": {
"plugins": {

"datasette-cluster-map": {
"latitude_column": "xlat",
"longitude_column": "xlng"

}
}

}
}

}
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In this case, the above code would return that configuration for ANY table within the sf-trees database.

The plugin configuration could also be set at the top level of metadata.json:

{
"title": "This is the top-level title in metadata.json",
"plugins": {

"datasette-cluster-map": {
"latitude_column": "xlat",
"longitude_column": "xlng"

}
}

}

Now that datasette-cluster-map plugin configuration will apply to every table in every database.

1.21.7 Designing URLs for your plugin

You can register new URL routes within Datasette using the register_routes() plugin hook.

Datasette’s default URLs include these:

• /dbname - database page

• /dbname/tablename - table page

• /dbname/tablename/pk - row page

See Pages and API endpoints and Introspection for more default URL routes.

To avoid accidentally conflicting with a database file that may be loaded into Datasette, plugins should register URLs
using a /-/ prefix. For example, if your plugin adds a new interface for uploading Excel files you might register a
URL route like this one:

• /-/upload-excel

Try to avoid registering URLs that clash with other plugins that your users might have installed. There is no central
repository of reserved URL paths (yet) but you can review existing plugins by browsing the datasette-plugin topic on
GitHub.

If your plugin includes functionality that relates to a specific database you could also register a URL route like this:

• /dbname/-/upload-excel

Or for a specific table like this:

• /dbname/tablename/-/modify-table-schema

Note that a row could have a primary key of - and this URL scheme will still work, because Datasette row pages do
not ever have a trailing slash followed by additional path components.

1.21.8 Building URLs within plugins

Plugins that define their own custom user interface elements may need to link to other pages within Datasette.

This can be a bit tricky if the Datasette instance is using the base_url configuration setting to run behind a proxy, since
that can cause Datasette’s URLs to include an additional prefix.

The datasette.urls object provides internal methods for correctly generating URLs to different pages within
Datasette, taking any base_url configuration into account.

This object is exposed in templates as the urls variable, which can be used like this:
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Back to the <a href="{{ urls.instance() }}">Homepage</a>

See datasette.urls for full details on this object.

1.22 Plugin hooks

Datasette plugins use plugin hooks to customize Datasette’s behavior. These hooks are powered by the pluggy plugin
system.

Each plugin can implement one or more hooks using the @hookimpl decorator against a function named that matches
one of the hooks documented on this page.

When you implement a plugin hook you can accept any or all of the parameters that are documented as being passed
to that hook.

For example, you can implement the render_cell plugin hook like this even though the full documented hook
signature is render_cell(value, column, table, database, datasette):

@hookimpl
def render_cell(value, column):

if column == "stars":
return "*" * int(value)

List of plugin hooks

• prepare_connection(conn, database, datasette)

• prepare_jinja2_environment(env)

• extra_template_vars(template, database, table, columns, view_name, request, datasette)

• extra_css_urls(template, database, table, columns, view_name, request, datasette)

• extra_js_urls(template, database, table, columns, view_name, request, datasette)

• extra_body_script(template, database, table, columns, view_name, request, datasette)

• publish_subcommand(publish)

• render_cell(value, column, table, database, datasette)

• register_output_renderer(datasette)

• register_routes()

• register_facet_classes()

• asgi_wrapper(datasette)

• startup(datasette)

• canned_queries(datasette, database, actor)

• actor_from_request(datasette, request)

• permission_allowed(datasette, actor, action, resource)

• register_magic_parameters(datasette)

• forbidden(datasette, request, message)
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• menu_links(datasette, actor, request)

• table_actions(datasette, actor, database, table, request)

• database_actions(datasette, actor, database, request)

• skip_csrf(datasette, scope)

• get_metadata(datasette, key, database, table)

1.22.1 prepare_connection(conn, database, datasette)

conn - sqlite3 connection object The connection that is being opened

database - string The name of the database

datasette - Datasette class You can use this to access plugin configuration options via datasette.
plugin_config(your_plugin_name)

This hook is called when a new SQLite database connection is created. You can use it to register custom SQL functions,
aggregates and collations. For example:

from datasette import hookimpl
import random

@hookimpl
def prepare_connection(conn):

conn.create_function('random_integer', 2, random.randint)

This registers a SQL function called random_integer which takes two arguments and can be called like this:

select random_integer(1, 10);

Examples: datasette-jellyfish, datasette-jq, datasette-haversine, datasette-rure

1.22.2 prepare_jinja2_environment(env)

env - jinja2 Environment The template environment that is being prepared

This hook is called with the Jinja2 environment that is used to evaluate Datasette HTML templates. You can use it to
do things like register custom template filters, for example:

from datasette import hookimpl

@hookimpl
def prepare_jinja2_environment(env):

env.filters['uppercase'] = lambda u: u.upper()

You can now use this filter in your custom templates like so:

Table name: {{ table|uppercase }}

1.22.3 extra_template_vars(template, database, table, columns, view_name, re-
quest, datasette)

Extra template variables that should be made available in the rendered template context.
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template - string The template that is being rendered, e.g. database.html

database - string or None The name of the database, or None if the page does not correspond to a database (e.g.
the root page)

table - string or None The name of the table, or None if the page does not correct to a table

columns - list of strings or None The names of the database columns that will be displayed on this page. None if
the page does not contain a table.

view_name - string The name of the view being displayed. (index, database, table, and row are the most
important ones.)

request - object or None The current HTTP Request object. This can be None if the request object is not available.

datasette - Datasette class You can use this to access plugin configuration options via datasette.
plugin_config(your_plugin_name)

This hook can return one of three different types:

Dictionary If you return a dictionary its keys and values will be merged into the template context.

Function that returns a dictionary If you return a function it will be executed. If it returns a dictionary those values
will will be merged into the template context.

Function that returns an awaitable function that returns a dictionary You can also return a function which re-
turns an awaitable function which returns a dictionary.

Datasette runs Jinja2 in async mode, which means you can add awaitable functions to the template scope and they will
be automatically awaited when they are rendered by the template.

Here’s an example plugin that adds a "user_agent" variable to the template context containing the current request’s
User-Agent header:

@hookimpl
def extra_template_vars(request):

return {
"user_agent": request.headers.get("user-agent")

}

This example returns an awaitable function which adds a list of hidden_table_names to the context:

@hookimpl
def extra_template_vars(datasette, database):

async def hidden_table_names():
if database:

db = datasette.databases[database]
return {"hidden_table_names": await db.hidden_table_names()}

else:
return {}

return hidden_table_names

And here’s an example which adds a sql_first(sql_query) function which executes a SQL statement and
returns the first column of the first row of results:

@hookimpl
def extra_template_vars(datasette, database):

async def sql_first(sql, dbname=None):
dbname = dbname or database or next(iter(datasette.databases.keys()))
return (await datasette.execute(dbname, sql)).rows[0][0]

return {"sql_first": sql_first}
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You can then use the new function in a template like so:

SQLite version: {{ sql_first("select sqlite_version()") }}

Examples: datasette-search-all, datasette-template-sql

1.22.4 extra_css_urls(template, database, table, columns, view_name, request,
datasette)

This takes the same arguments as extra_template_vars(...)

Return a list of extra CSS URLs that should be included on the page. These can take advantage of the CSS class hooks
described in Custom pages and templates.

This can be a list of URLs:

from datasette import hookimpl

@hookimpl
def extra_css_urls():

return [
"https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css"

]

Or a list of dictionaries defining both a URL and an SRI hash:

@hookimpl
def extra_css_urls():

return [{
"url": "https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.

→˓css",
"sri": "sha384-

→˓9gVQ4dYFwwWSjIDZnLEWnxCjeSWFphJiwGPXr1jddIhOegiu1FwO5qRGvFXOdJZ4",
}]

This function can also return an awaitable function, useful if it needs to run any async code:

@hookimpl
def extra_css_urls(datasette):

async def inner():
db = datasette.get_database()
results = await db.execute("select url from css_files")
return [r[0] for r in results]

return inner

Examples: datasette-cluster-map, datasette-vega

1.22.5 extra_js_urls(template, database, table, columns, view_name, request,
datasette)

This takes the same arguments as extra_template_vars(...)

This works in the same way as extra_css_urls() but for JavaScript. You can return a list of URLs, a list of
dictionaries or an awaitable function that returns those things:
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from datasette import hookimpl

@hookimpl
def extra_js_urls():

return [{
"url": "https://code.jquery.com/jquery-3.3.1.slim.min.js",
"sri": "sha384-q8i/

→˓X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo",
}]

You can also return URLs to files from your plugin’s static/ directory, if you have one:

@hookimpl
def extra_js_urls():

return [
"/-/static-plugins/your-plugin/app.js"

]

Note that your-plugin here should be the hyphenated plugin name - the name that is displayed in the list on the
/-/plugins debug page.

If your code uses JavaScript modules you should include the "module": True key. See Custom CSS and
JavaScript for more details.

@hookimpl
def extra_js_urls():

return [{
"url": "/-/static-plugins/your-plugin/app.js",
"module": True

]

Examples: datasette-cluster-map, datasette-vega

1.22.6 extra_body_script(template, database, table, columns, view_name, request,
datasette)

Extra JavaScript to be added to a <script> block at the end of the <body> element on the page.

This takes the same arguments as extra_template_vars(...)

The template, database, table and view_name options can be used to return different code depending on
which template is being rendered and which database or table are being processed.

The datasette instance is provided primarily so that you can consult any plugin configuration options that may
have been set, using the datasette.plugin_config(plugin_name) method documented above.

This function can return a string containing JavaScript, or a dictionary as described below, or a function or awaitable
function that returns a string or dictionary.

Use a dictionary if you want to specify that the code should be placed in a <script type="module">...</
script> element:

@hookimpl
def extra_body_script():

return {
"module": True,
"script": "console.log('Your JavaScript goes here...')"

}
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This will add the following to the end of your page:

<script type="module">console.log('Your JavaScript goes here...')</script>

Example: datasette-cluster-map

1.22.7 publish_subcommand(publish)

publish - Click publish command group The Click command group for the datasette publish subcom-
mand

This hook allows you to create new providers for the datasette publish command. Datasette uses this hook
internally to implement the default cloudrun and heroku subcommands, so you can read their source to see
examples of this hook in action.

Let’s say you want to build a plugin that adds a datasette publish my_hosting_provider
--api_key=xxx mydatabase.db publish command. Your implementation would start like this:

from datasette import hookimpl
from datasette.publish.common import add_common_publish_arguments_and_options
import click

@hookimpl
def publish_subcommand(publish):

@publish.command()
@add_common_publish_arguments_and_options
@click.option(

"-k",
"--api_key",
help="API key for talking to my hosting provider",

)
def my_hosting_provider(

files,
metadata,
extra_options,
branch,
template_dir,
plugins_dir,
static,
install,
plugin_secret,
version_note,
secret,
title,
license,
license_url,
source,
source_url,
about,
about_url,
api_key,

):
# Your implementation goes here

Examples: datasette-publish-fly, datasette-publish-vercel
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1.22.8 render_cell(value, column, table, database, datasette)

Lets you customize the display of values within table cells in the HTML table view.

value - string, integer or None The value that was loaded from the database

column - string The name of the column being rendered

table - string or None The name of the table - or None if this is a custom SQL query

database - string The name of the database

datasette - Datasette class You can use this to access plugin configuration options via datasette.
plugin_config(your_plugin_name)

If your hook returns None, it will be ignored. Use this to indicate that your hook is not able to custom render this
particular value.

If the hook returns a string, that string will be rendered in the table cell.

If you want to return HTML markup you can do so by returning a jinja2.Markup object.

Datasette will loop through all available render_cell hooks and display the value returned by the first one that
does not return None.

Here is an example of a custom render_cell() plugin which looks for values that are a JSON string matching the
following format:

{"href": "https://www.example.com/", "label": "Name"}

If the value matches that pattern, the plugin returns an HTML link element:

from datasette import hookimpl
import markupsafe
import json

@hookimpl
def render_cell(value):

# Render {"href": "...", "label": "..."} as link
if not isinstance(value, str):

return None
stripped = value.strip()
if not stripped.startswith("{") and stripped.endswith("}"):

return None
try:

data = json.loads(value)
except ValueError:

return None
if not isinstance(data, dict):

return None
if set(data.keys()) != {"href", "label"}:

return None
href = data["href"]
if not (

href.startswith("/") or href.startswith("http://")
or href.startswith("https://")

):
return None

return markupsafe.Markup('<a href="{href}">{label}</a>'.format(
href=markupsafe.escape(data["href"]),

(continues on next page)
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label=markupsafe.escape(data["label"] or "") or "&nbsp;"
))

Examples: datasette-render-binary, datasette-render-markdown, datasette-json-html

1.22.9 register_output_renderer(datasette)

datasette - Datasette class You can use this to access plugin configuration options via datasette.
plugin_config(your_plugin_name)

Registers a new output renderer, to output data in a custom format. The hook function should return a dictionary, or a
list of dictionaries, of the following shape:

@hookimpl
def register_output_renderer(datasette):

return {
"extension": "test",
"render": render_demo,
"can_render": can_render_demo, # Optional

}

This will register render_demo to be called when paths with the extension .test (for example /database.
test, /database/table.test, or /database/table/row.test) are requested.

render_demo is a Python function. It can be a regular function or an async def render_demo() awaitable
function, depending on if it needs to make any asynchronous calls.

can_render_demo is a Python function (or async def function) which acepts the same arguments as
render_demo but just returns True or False. It lets Datasette know if the current SQL query can be repre-
sented by the plugin - and hence influnce if a link to this output format is displayed in the user interface. If you omit
the "can_render" key from the dictionary every query will be treated as being supported by the plugin.

When a request is received, the "render" callback function is called with zero or more of the following arguments.
Datasette will inspect your callback function and pass arguments that match its function signature.

datasette - Datasette class For accessing plugin configuration and executing queries.

columns - list of strings The names of the columns returned by this query.

rows - list of sqlite3.Row objects The rows returned by the query.

sql - string The SQL query that was executed.

query_name - string or None If this was the execution of a canned query, the name of that query.

database - string The name of the database.

table - string or None The table or view, if one is being rendered.

request - Request object The incoming HTTP request.

view_name - string The name of the current view being called. index, database, table, and row are the
most important ones.

The callback function can return None, if it is unable to render the data, or a Response class that will be returned to
the caller.

It can also return a dictionary with the following keys. This format is deprecated as-of Datasette 0.49 and will be
removed by Datasette 1.0.

body - string or bytes, optional The response body, default empty
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content_type - string, optional The Content-Type header, default text/plain

status_code - integer, optional The HTTP status code, default 200

headers - dictionary, optional Extra HTTP headers to be returned in the response.

An example of an output renderer callback function:

def render_demo():
return Response.text("Hello World")

Here is a more complex example:

async def render_demo(datasette, columns, rows):
db = datasette.get_database()
result = await db.execute("select sqlite_version()")
first_row = " | ".join(columns)
lines = [first_row]
lines.append("=" * len(first_row))
for row in rows:

lines.append(" | ".join(row))
return Response(

"\n".join(lines),
content_type="text/plain; charset=utf-8",
headers={"x-sqlite-version": result.first()[0]}

)

And here is an example can_render function which returns True only if the query results contain the columns
atom_id, atom_title and atom_updated:

def can_render_demo(columns):
return {"atom_id", "atom_title", "atom_updated"}.issubset(columns)

Examples: datasette-atom, datasette-ics

1.22.10 register_routes()

Register additional view functions to execute for specified URL routes.

Return a list of (regex, view_function) pairs, something like this:

from datasette.utils.asgi import Response
import html

async def hello_from(request):
name = request.url_vars["name"]
return Response.html("Hello from {}".format(

html.escape(name)
))

@hookimpl
def register_routes():

return [
(r"^/hello-from/(?P<name>.*)$", hello_from)

]
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The view functions can take a number of different optional arguments. The corresponding argument will be passed to
your function depending on its named parameters - a form of dependency injection.

The optional view function arguments are as follows:

datasette - Datasette class You can use this to access plugin configuration options via datasette.
plugin_config(your_plugin_name), or to execute SQL queries.

request - Request object The current HTTP Request object.

scope - dictionary The incoming ASGI scope dictionary.

send - function The ASGI send function.

receive - function The ASGI receive function.

The view function can be a regular function or an async def function, depending on if it needs to use any await
APIs.

The function can either return a Response class or it can return nothing and instead respond directly to the request
using the ASGI send function (for advanced uses only).

See Designing URLs for your plugin for tips on designing the URL routes used by your plugin.

Examples: datasette-auth-github, datasette-psutil

1.22.11 register_facet_classes()

Return a list of additional Facet subclasses to be registered.

Warning: The design of this plugin hook is unstable and may change. See issue 830.

Each Facet subclass implements a new type of facet operation. The class should look like this:

class SpecialFacet(Facet):
# This key must be unique across all facet classes:
type = "special"

async def suggest(self):
# Use self.sql and self.params to suggest some facets
suggested_facets = []
suggested_facets.append({

"name": column, # Or other unique name
# Construct the URL that will enable this facet:
"toggle_url": self.ds.absolute_url(

self.request, path_with_added_args(
self.request, {"_facet": column}

)
),

})
return suggested_facets

async def facet_results(self):
# This should execute the facet operation and return results, again
# using self.sql and self.params as the starting point
facet_results = {}
facets_timed_out = []
facet_size = self.get_facet_size()

(continues on next page)
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# Do some calculations here...
for column in columns_selected_for_facet:

try:
facet_results_values = []
# More calculations...
facet_results_values.append({

"value": value,
"label": label,
"count": count,
"toggle_url": self.ds.absolute_url(self.request, toggle_path),
"selected": selected,

})
facet_results[column] = {

"name": column,
"results": facet_results_values,
"truncated": len(facet_rows_results) > facet_size,

}
except QueryInterrupted:

facets_timed_out.append(column)

return facet_results, facets_timed_out

See datasette/facets.py for examples of how these classes can work.

The plugin hook can then be used to register the new facet class like this:

@hookimpl
def register_facet_classes():

return [SpecialFacet]

1.22.12 asgi_wrapper(datasette)

Return an ASGI middleware wrapper function that will be applied to the Datasette ASGI application.

This is a very powerful hook. You can use it to manipulate the entire Datasette response, or even to configure new
URL routes that will be handled by your own custom code.

You can write your ASGI code directly against the low-level specification, or you can use the middleware utilites
provided by an ASGI framework such as Starlette.

This example plugin adds a x-databases HTTP header listing the currently attached databases:

from datasette import hookimpl
from functools import wraps

@hookimpl
def asgi_wrapper(datasette):

def wrap_with_databases_header(app):
@wraps(app)
async def add_x_databases_header(scope, recieve, send):

async def wrapped_send(event):
if event["type"] == "http.response.start":

original_headers = event.get("headers") or []
event = {

"type": event["type"],

(continues on next page)
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"status": event["status"],
"headers": original_headers + [

[b"x-databases",
", ".join(datasette.databases.keys()).encode("utf-8")]

],
}

await send(event)
await app(scope, recieve, wrapped_send)

return add_x_databases_header
return wrap_with_databases_header

Example: datasette-cors

1.22.13 startup(datasette)

This hook fires when the Datasette application server first starts up. You can implement a regular function, for example
to validate required plugin configuration:

@hookimpl
def startup(datasette):

config = datasette.plugin_config("my-plugin") or {}
assert "required-setting" in config, "my-plugin requires setting required-setting"

Or you can return an async function which will be awaited on startup. Use this option if you need to make any database
queries:

@hookimpl
def startup(datasette):

async def inner():
db = datasette.get_database()
if "my_table" not in await db.table_names():

await db.execute_write("""
create table my_table (mycol text)

""", block=True)
return inner

Potential use-cases:

• Run some initialization code for the plugin

• Create database tables that a plugin needs on startup

• Validate the metadata configuration for a plugin on startup, and raise an error if it is invalid

Note: If you are writing unit tests for a plugin that uses this hook you will need to explicitly call await ds.
invoke_startup() in your tests. An example:

@pytest.mark.asyncio
async def test_my_plugin():

ds = Datasette([], metadata={})
await ds.invoke_startup()
# Rest of test goes here

Examples: datasette-saved-queries, datasette-init
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1.22.14 canned_queries(datasette, database, actor)

datasette - Datasette class You can use this to access plugin configuration options via datasette.
plugin_config(your_plugin_name), or to execute SQL queries.

database - string The name of the database.

actor - dictionary or None The currently authenticated actor.

Ues this hook to return a dictionary of additional canned query definitions for the specified database. The return value
should be the same shape as the JSON described in the canned query documentation.

from datasette import hookimpl

@hookimpl
def canned_queries(datasette, database):

if database == "mydb":
return {

"my_query": {
"sql": "select * from my_table where id > :min_id"

}
}

The hook can alternatively return an awaitable function that returns a list. Here’s an example that returns queries that
have been stored in the saved_queries database table, if one exists:

from datasette import hookimpl

@hookimpl
def canned_queries(datasette, database):

async def inner():
db = datasette.get_database(database)
if await db.table_exists("saved_queries"):

results = await db.execute("select name, sql from saved_queries")
return {result["name"]: {

"sql": result["sql"]
} for result in results}

return inner

The actor parameter can be used to include the currently authenticated actor in your decision. Here’s an example that
returns saved queries that were saved by that actor:

from datasette import hookimpl

@hookimpl
def canned_queries(datasette, database, actor):

async def inner():
db = datasette.get_database(database)
if actor is not None and await db.table_exists("saved_queries"):

results = await db.execute(
"select name, sql from saved_queries where actor_id = :id", {

"id": actor["id"]
}

)
return {result["name"]: {

"sql": result["sql"]
} for result in results}

return inner
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Example: datasette-saved-queries

1.22.15 actor_from_request(datasette, request)

datasette - Datasette class You can use this to access plugin configuration options via datasette.
plugin_config(your_plugin_name), or to execute SQL queries.

request - object The current HTTP Request object.

This is part of Datasette’s authentication and permissions system. The function should attempt to authenticate an actor
(either a user or an API actor of some sort) based on information in the request.

If it cannot authenticate an actor, it should return None. Otherwise it should return a dictionary representing that actor.

Here’s an example that authenticates the actor based on an incoming API key:

from datasette import hookimpl
import secrets

SECRET_KEY = "this-is-a-secret"

@hookimpl
def actor_from_request(datasette, request):

authorization = request.headers.get("authorization") or ""
expected = "Bearer {}".format(SECRET_KEY)

if secrets.compare_digest(authorization, expected):
return {"id": "bot"}

If you install this in your plugins directory you can test it like this:

$ curl -H 'Authorization: Bearer this-is-a-secret' http://localhost:8003/-/actor.json

Instead of returning a dictionary, this function can return an awaitable function which itself returns either None or a
dictionary. This is useful for authentication functions that need to make a database query - for example:

from datasette import hookimpl

@hookimpl
def actor_from_request(datasette, request):

async def inner():
token = request.args.get("_token")
if not token:

return None
# Look up ?_token=xxx in sessions table
result = await datasette.get_database().execute(

"select count(*) from sessions where token = ?", [token]
)
if result.first()[0]:

return {"token": token}
else:

return None

return inner

Example: datasette-auth-tokens
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1.22.16 permission_allowed(datasette, actor, action, resource)

datasette - Datasette class You can use this to access plugin configuration options via datasette.
plugin_config(your_plugin_name), or to execute SQL queries.

actor - dictionary The current actor, as decided by actor_from_request(datasette, request).

action - string The action to be performed, e.g. "edit-table".

resource - string or None An identifier for the individual resource, e.g. the name of the table.

Called to check that an actor has permission to perform an action on a resource. Can return True if the action is
allowed, False if the action is not allowed or None if the plugin does not have an opinion one way or the other.

Here’s an example plugin which randomly selects if a permission should be allowed or denied, except for
view-instance which always uses the default permission scheme instead.

from datasette import hookimpl
import random

@hookimpl
def permission_allowed(action):

if action != "view-instance":
# Return True or False at random
return random.random() > 0.5

# Returning None falls back to default permissions

This function can alternatively return an awaitable function which itself returns True, False or None. You can use
this option if you need to execute additional database queries using await datasette.execute(...).

Here’s an example that allows users to view the admin_log table only if their actor id is present in the
admin_users table. It aso disallows arbitrary SQL queries for the staff.db database for all users.

@hookimpl
def permission_allowed(datasette, actor, action, resource):

async def inner():
if action == "execute-sql" and resource == "staff":

return False
if action == "view-table" and resource == ("staff", "admin_log"):

if not actor:
return False

user_id = actor["id"]
return await datasette.get_database("staff").execute(

"select count(*) from admin_users where user_id = :user_id",
{"user_id": user_id},

)

return inner

See built-in permissions for a full list of permissions that are included in Datasette core.

Example: datasette-permissions-sql

1.22.17 register_magic_parameters(datasette)

datasette - Datasette class You can use this to access plugin configuration options via datasette.
plugin_config(your_plugin_name).
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Magic parameters can be used to add automatic parameters to canned queries. This plugin hook allows additional
magic parameters to be defined by plugins.

Magic parameters all take this format: _prefix_rest_of_parameter. The prefix indicates which magic pa-
rameter function should be called - the rest of the parameter is passed as an argument to that function.

To register a new function, return it as a tuple of (string prefix, function) from this hook. The function
you register should take two arguments: key and request, where key is the rest_of_parameter portion of
the parameter and request is the current Request object.

This example registers two new magic parameters: :_request_http_version returning the HTTP version of
the current request, and :_uuid_new which returns a new UUID:

from uuid import uuid4

def uuid(key, request):
if key == "new":

return str(uuid4())
else:

raise KeyError

def request(key, request):
if key == "http_version":

return request.scope["http_version"]
else:

raise KeyError

@hookimpl
def register_magic_parameters(datasette):

return [
("request", request),
("uuid", uuid),

]

1.22.18 forbidden(datasette, request, message)

datasette - Datasette class You can use this to access plugin configuration options via datasette.
plugin_config(your_plugin_name), or to execute SQL queries.

request - object The current HTTP Request object.

message - string A message hinting at why the request was forbidden.

Plugins can use this to customize how Datasette responds when a 403 Forbidden error occurs - usually because a page
failed a permission check, see Permissions.

If a plugin hook wishes to react to the error, it should return a Response object.

This example returns a redirect to a /-/login page:

from datasette import hookimpl
from urllib.parse import urlencode

@hookimpl
def forbidden(request, message):

return Response.redirect("/-/login?=" + urlencode({"message": message}))

The function can alternatively return an awaitable function if it needs to make any asynchronous method calls. This
example renders a template:
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from datasette import hookimpl
from datasette.utils.asgi import Response

@hookimpl
def forbidden(datasette):

async def inner():
return Response.html(await datasette.render_template("forbidden.html"))

return inner

1.22.19 menu_links(datasette, actor, request)

datasette - Datasette class You can use this to access plugin configuration options via datasette.
plugin_config(your_plugin_name), or to execute SQL queries.

actor - dictionary or None The currently authenticated actor.

request - object or None The current HTTP Request object. This can be None if the request object is not available.

This hook allows additional items to be included in the menu displayed by Datasette’s top right menu icon.

The hook should return a list of {"href": "...", "label": "..."} menu items. These will be added to
the menu.

It can alternatively return an async def awaitable function which returns a list of menu items.

This example adds a new menu item but only if the signed in user is "root":

from datasette import hookimpl

@hookimpl
def menu_links(datasette, actor):

if actor and actor.get("id") == "root":
return [

{"href": datasette.urls.path("/-/edit-schema"), "label": "Edit schema"},
]

Using datasette.urls here ensures that links in the menu will take the base_url setting into account.

1.22.20 table_actions(datasette, actor, database, table, request)

datasette - Datasette class You can use this to access plugin configuration options via datasette.
plugin_config(your_plugin_name), or to execute SQL queries.

actor - dictionary or None The currently authenticated actor.

database - string The name of the database.

table - string The name of the table.

request - object The current HTTP Request object. This can be None if the request object is not available.

This hook allows table actions to be displayed in a menu accessed via an action icon at the top of the table page. It
should return a list of {"href": "...", "label": "..."} menu items.

It can alternatively return an async def awaitable function which returns a list of menu items.

This example adds a new table action if the signed in user is "root":
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from datasette import hookimpl

@hookimpl
def table_actions(datasette, actor):

if actor and actor.get("id") == "root":
return [{

"href": datasette.urls.path("/-/edit-schema/{}/{}".format(database,
→˓table)),

"label": "Edit schema for this table",
}]

1.22.21 database_actions(datasette, actor, database, request)

datasette - Datasette class You can use this to access plugin configuration options via datasette.
plugin_config(your_plugin_name), or to execute SQL queries.

actor - dictionary or None The currently authenticated actor.

database - string The name of the database.

request - object The current HTTP Request object.

This hook is similar to table_actions(datasette, actor, database, table, request) but populates an actions menu on the
database page.

1.22.22 skip_csrf(datasette, scope)

datasette - Datasette class You can use this to access plugin configuration options via datasette.
plugin_config(your_plugin_name), or to execute SQL queries.

scope - dictionary The ASGI scope for the incoming HTTP request.

This hook can be used to skip CSRF protection for a specific incoming request. For example, you might have a custom
path at /submit-comment which is designed to accept comments from anywhere, whether or not the incoming
request originated on the site and has an accompanying CSRF token.

This example will disable CSRF protection for that specific URL path:

from datasette import hookimpl

@hookimpl
def skip_csrf(scope):

return scope["path"] == "/submit-comment"

If any of the currently active skip_csrf() plugin hooks return True, CSRF protection will be skipped for the
request.

1.22.23 get_metadata(datasette, key, database, table)

datasette - Datasette class You can use this to access plugin configuration options via datasette.
plugin_config(your_plugin_name).

actor - dictionary or None The currently authenticated actor.

database - string or None The name of the database metadata is being asked for.

table - string or None The name of the table.
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key - string or None The name of the key for which data is being asked for.

This hook is responsible for returning a dictionary corresponding to Datasette Metadata. This function is passed the
database, table and key which were passed to the upstream internal request for metadata. Regardless, it is
important to return a global metadata object, where "databases": [] would be a top-level key. The dictionary
returned here, will be merged with, and overwritten by, the contents of the physical metadata.yaml if one is
present.

Warning: The design of this plugin hook does not currently provide a mechanism for interacting with async code,
and may change in the future. See issue 1384.

@hookimpl
def get_metadata(datasette, key, database, table):

metadata = {
"title": "This will be the Datasette landing page title!",
"description": get_instance_description(datasette),
"databases": [],

}
for db_name, db_data_dict in get_my_database_meta(datasette, database, table,

→˓key):
metadata["databases"][db_name] = db_data_dict

# whatever we return here will be merged with any other plugins using this hook
→˓and

# will be overwritten by a local metadata.yaml if one exists!
return metadata

1.23 Testing plugins

We recommend using pytest to write automated tests for your plugins.

If you use the template described in Starting an installable plugin using cookiecutter your plugin will start with a
single test in your tests/ directory that looks like this:

from datasette.app import Datasette
import pytest

@pytest.mark.asyncio
async def test_plugin_is_installed():

datasette = Datasette([], memory=True)
response = await datasette.client.get("/-/plugins.json")
assert response.status_code == 200
installed_plugins = {p["name"] for p in response.json()}
assert "datasette-plugin-template-demo" in installed_plugins

This test uses the datasette.client object to exercise a test instance of Datasette. datasette.client is a wrapper
around the HTTPX Python library which can imitate HTTP requests using ASGI. This is the recommended way to
write tests against a Datasette instance.

This test also uses the pytest-asyncio package to add support for async def test functions running under pytest.

You can install these packages like so:

pip install pytest pytest-asyncio
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If you are building an installable package you can add them as test dependencies to your setup.py module like this:

setup(
name="datasette-my-plugin",
# ...
extras_require={

"test": ["pytest", "pytest-asyncio"]
},
tests_require=["datasette-my-plugin[test]"],

)

You can then install the test dependencies like so:

pip install -e '.[test]'

Then run the tests using pytest like so:

pytest

1.23.1 Using pdb for errors thrown inside Datasette

If an exception occurs within Datasette itself during a test, the response returned to your plugin will have a
response.status_code value of 500.

You can add pdb=True to the Datasette constructor to drop into a Python debugger session inside your test run
instead of getting back a 500 response code. This is equivalent to running the datasette command-line tool with
the --pdb option.

Here’s what that looks like in a test function:

def test_that_opens_the_debugger_or_errors():
ds = Datasette([db_path], pdb=True)
response = await ds.client.get("/")

If you use this pattern you will need to run pytest with the -s option to avoid capturing stdin/stdout in order to
interact with the debugger prompt.

1.23.2 Using pytest fixtures

Pytest fixtures can be used to create initial testable objects which can then be used by multiple tests.

A common pattern for Datasette plugins is to create a fixture which sets up a temporary test database and wraps it in a
Datasette instance.

Here’s an example that uses the sqlite-utils library to populate a temporary test database. It also sets the title of that
table using a simulated metadata.json configuration:

from datasette.app import Datasette
import pytest
import sqlite_utils

@pytest.fixture(scope="session")
def datasette(tmp_path_factory):

db_directory = tmp_path_factory.mktemp("dbs")
db_path = db_directory / "test.db"
db = sqlite_utils.Database(db_path)

(continues on next page)
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(continued from previous page)

db["dogs"].insert_all([
{"id": 1, "name": "Cleo", "age": 5},
{"id": 2, "name": "Pancakes", "age": 4}

], pk="id")
datasette = Datasette(

[db_path],
metadata={

"databases": {
"test": {

"tables": {
"dogs": {

"title": "Some dogs"
}

}
}

}
}

)
return datasette

@pytest.mark.asyncio
async def test_example_table_json(datasette):

response = await datasette.client.get("/test/dogs.json?_shape=array")
assert response.status_code == 200
assert response.json() == [

{"id": 1, "name": "Cleo", "age": 5},
{"id": 2, "name": "Pancakes", "age": 4},

]

@pytest.mark.asyncio
async def test_example_table_html(datasette):

response = await datasette.client.get("/test/dogs")
assert ">Some dogs</h1>" in response.text

Here the datasette() function defines the fixture, which is than automatically passed to the two test functions
based on pytest automatically matching their datasette function parameters.

The @pytest.fixture(scope="session") line here ensures the fixture is reused for the full pytest exe-
cution session. This means that the temporary database file will be created once and reused for each test.

If you want to create that test database repeatedly for every individual test function, write the fixture function like this
instead. You may want to do this if your plugin modifies the database contents in some way:

@pytest.fixture
def datasette(tmp_path_factory):

# This fixture will be executed repeatedly for every test

1.23.3 Testing outbound HTTP calls with pytest-httpx

If your plugin makes outbound HTTP calls - for example datasette-auth-github or datasette-import-table - you may
need to mock those HTTP requests in your tests.

The pytest-httpx package is a useful library for mocking calls. It can be tricky to use with Datasette though since it
mocks all HTTPX requests, and Datasette’s own testing mechanism uses HTTPX internally.

To avoid breaking your tests, you can return ["localhost"] from the non_mocked_hosts() fixture.
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As an example, here’s a very simple plugin which executes an HTTP response and returns the resulting content:

from datasette import hookimpl
from datasette.utils.asgi import Response
import httpx

@hookimpl
def register_routes():

return [
(r"^/-/fetch-url$", fetch_url),

]

async def fetch_url(datasette, request):
if request.method == "GET":

return Response.html(
"""
<form action="/-/fetch-url" method="post">
<input type="hidden" name="csrftoken" value="{}">
<input name="url"><input type="submit">

</form>""".format(
request.scope["csrftoken"]()

)
)

vars = await request.post_vars()
url = vars["url"]
return Response.text(httpx.get(url).text)

Here’s a test for that plugin that mocks the HTTPX outbound request:

from datasette.app import Datasette
import pytest

@pytest.fixture
def non_mocked_hosts():

# This ensures httpx-mock will not affect Datasette's own
# httpx calls made in the tests by datasette.client:
return ["localhost"]

async def test_outbound_http_call(httpx_mock):
httpx_mock.add_response(

url='https://www.example.com/',
data='Hello world',

)
datasette = Datasette([], memory=True)
response = await datasette.client.post("/-/fetch-url", data={

"url": "https://www.example.com/"
})
assert response.text == "Hello world"

outbound_request = httpx_mock.get_request()
assert outbound_request.url == "https://www.example.com/"
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1.24 Internals for plugins

Many Plugin hooks are passed objects that provide access to internal Datasette functionality. The interface to these
objects should not be considered stable with the exception of methods that are documented here.

1.24.1 Request object

The request object is passed to various plugin hooks. It represents an incoming HTTP request. It has the following
properties:

.scope - dictionary The ASGI scope that was used to construct this request, described in the ASGI HTTP connec-
tion scope specification.

.method - string The HTTP method for this request, usually GET or POST.

.url - string The full URL for this request, e.g. https://latest.datasette.io/fixtures.

.scheme - string The request scheme - usually https or http.

.headers - dictionary (str -> str) A dictionary of incoming HTTP request headers.

.cookies - dictionary (str -> str) A dictionary of incoming cookies

.host - string The host header from the incoming request, e.g. latest.datasette.io or localhost.

.path - string The path of the request excluding the query string, e.g. /fixtures.

.full_path - string The path of the request including the query string if one is present, e.g. /fixtures?
sql=select+sqlite_version().

.query_string - string The query string component of the request, without the ? - e.g.
name__contains=sam&age__gt=10.

.args - MultiParams An object representing the parsed query string parameters, see below.

.url_vars - dictionary (str -> str) Variables extracted from the URL path, if that path was defined using a regular
expression. See register_routes().

.actor - dictionary (str -> Any) or None The currently authenticated actor (see actors), or None if the request is
unauthenticated.

The object also has two awaitable methods:

await request.post_vars() - dictionary Returns a dictionary of form variables that were submitted in the
request body via POST. Don’t forget to read about CSRF protection!

await request.post_body() - bytes Returns the un-parsed body of a request submitted by POST - useful for
things like incoming JSON data.

1.24.2 The MultiParams class

request.args is a MultiParams object - a dictionary-like object which provides access to query string param-
eters that may have multiple values.

Consider the query string ?foo=1&foo=2&bar=3 - with two values for foo and one value for bar.

request.args[key] - string Returns the first value for that key, or raises a KeyError if the key is missing. For
the above example request.args["foo"] would return "1".

request.args.get(key) - string or None Returns the first value for that key, or None if the key is missing.
Pass a second argument to specify a different default, e.g. q = request.args.get("q", "").
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request.args.getlist(key) - list of strings Returns the list of strings for that key. request.
args.getlist("foo") would return ["1", "2"] in the above example. request.args.
getlist("bar") would return ["3"]. If the key is missing an empty list will be returned.

request.args.keys() - list of strings Returns the list of available keys - for the example this would be
["foo", "bar"].

key in request.args - True or False You can use if key in request.args to check if a key is
present.

for key in request.args - iterator This lets you loop through every available key.

len(request.args) - integer Returns the number of keys.

1.24.3 Response class

The Response class can be returned from view functions that have been registered using the register_routes() hook.

The Response() constructor takes the following arguments:

body - string The body of the response.

status - integer (optional) The HTTP status - defaults to 200.

headers - dictionary (optional) A dictionary of extra HTTP headers, e.g. {"x-hello": "world"}.

content_type - string (optional) The content-type for the response. Defaults to text/plain.

For example:

from datasette.utils.asgi import Response

response = Response(
"<xml>This is XML</xml>",
content_type="application/xml; charset=utf-8"

)

The quickest way to create responses is using the Response.text(...), Response.html(...),
Response.json(...) or Response.redirect(...) helper methods:

from datasette.utils.asgi import Response

html_response = Response.html("This is HTML")
json_response = Response.json({"this_is": "json"})
text_response = Response.text("This will become utf-8 encoded text")
# Redirects are served as 302, unless you pass status=301:
redirect_response = Response.redirect("https://latest.datasette.io/")

Each of these responses will use the correct corresponding content-type - text/html; charset=utf-8,
application/json; charset=utf-8 or text/plain; charset=utf-8 respectively.

Each of the helper methods take optional status= and headers= arguments, documented above.

Returning a response with .asgi_send(send)

In most cases you will return Response objects from your own view functions. You can also use a Response
instance to respond at a lower level via ASGI, for example if you are writing code that uses the asgi_wrapper(datasette)
hook.
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Create a Response object and then use await response.asgi_send(send), passing the ASGI send func-
tion. For example:

async def require_authorization(scope, recieve, send):
response = Response.text(

"401 Authorization Required",
headers={

"www-authenticate": 'Basic realm="Datasette", charset="UTF-8"'
},
status=401,

)
await response.asgi_send(send)

Setting cookies with response.set_cookie()

To set cookies on the response, use the response.set_cookie(...) method. The method signature looks like
this:

def set_cookie(
self,
key,
value="",
max_age=None,
expires=None,
path="/",
domain=None,
secure=False,
httponly=False,
samesite="lax",

):

You can use this with datasette.sign() to set signed cookies. Here’s how you would set the ds_actor cookie for use
with Datasette authentication:

response = Response.redirect("/")
response.set_cookie("ds_actor", datasette.sign({"a": {"id": "cleopaws"}}, "actor"))
return response

1.24.4 Datasette class

This object is an instance of the Datasette class, passed to many plugin hooks as an argument called datasette.

.plugin_config(plugin_name, database=None, table=None)

plugin_name - string The name of the plugin to look up configuration for. Usually this is something similar to
datasette-cluster-map.

database - None or string The database the user is interacting with.

table - None or string The table the user is interacting with.

This method lets you read plugin configuration values that were set in metadata.json. See Writing plugins that
accept configuration for full details of how this method should be used.
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await .render_template(template, context=None, request=None)

template - string, list of strings or jinja2.Template The template file to be rendered, e.g. my_plugin.html.
Datasette will search for this file first in the --template-dir= location, if it was specified - then in the
plugin’s bundled templates and finally in Datasette’s set of default templates.

If this is a list of template file names then the first one that exists will be loaded and rendered.

If this is a Jinja Template object it will be used directly.

context - None or a Python dictionary The context variables to pass to the template.

request - request object or None If you pass a Datasette request object here it will be made available to the tem-
plate.

Renders a Jinja template using Datasette’s preconfigured instance of Jinja and returns the resulting string. The template
will have access to Datasette’s default template functions and any functions that have been made available by other
plugins.

await .permission_allowed(actor, action, resource=None, default=False)

actor - dictionary The authenticated actor. This is usually request.actor.

action - string The name of the action that is being permission checked.

resource - string or tuple, optional The resource, e.g. the name of the database, or a tuple of two strings contain-
ing the name of the database and the name of the table. Only some permissions apply to a resource.

default - optional, True or False Should this permission check be default allow or default deny.

Check if the given actor has permission to perform the given action on the given resource.

Some permission checks are carried out against rules defined in metadata.json, while other custom permissions may
be decided by plugins that implement the permission_allowed(datasette, actor, action, resource) plugin hook.

If neither metadata.json nor any of the plugins provide an answer to the permission query the default argument
will be returned.

See Built-in permissions for a full list of permission actions included in Datasette core.

.get_database(name)

name - string, optional The name of the database - optional.

Returns the specified database object. Raises a KeyError if the database does not exist. Call this method without an
argument to return the first connected database.

.add_database(db, name=None)

db - datasette.database.Database instance The database to be attached.

name - string, optional The name to be used for this database - this will be used in the URL path, e.g. /dbname. If
not specified Datasette will pick one based on the filename or memory name.

The datasette.add_database(db) method lets you add a new database to the current Datasette instance.

The db parameter should be an instance of the datasette.database.Database class. For example:
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from datasette.database import Database

datasette.add_database(Database(
datasette,
path="path/to/my-new-database.db",
is_mutable=True

))

This will add a mutable database and serve it at /my-new-database.

.add_database() returns the Database instance, with its name set as the database.name attribute. Any time
you are working with a newly added database you should use the return value of .add_database(), for example:

db = datasette.add_database(Database(datasette, memory_name="statistics"))
await db.execute_write("CREATE TABLE foo(id integer primary key)", block=True)

.add_memory_database(name)

Adds a shared in-memory database with the specified name:

datasette.add_memory_database("statistics")

This is a shortcut for the following:

from datasette.database import Database

datasette.add_database(Database(
datasette,
memory_name="statistics"

))

Using either of these pattern will result in the in-memory database being served at /statistics.

.remove_database(name)

name - string The name of the database to be removed.

This removes a database that has been previously added. name= is the unique name of that database, used in its URL
path.

.sign(value, namespace="default")

value - any serializable type The value to be signed.

namespace - string, optional An alternative namespace, see the itsdangerous salt documentation.

Utility method for signing values, such that you can safely pass data to and from an untrusted environment. This is a
wrapper around the itsdangerous library.

This method returns a signed string, which can be decoded and verified using .unsign(value, namespace="default").

.unsign(value, namespace="default")

signed - any serializable type The signed string that was created using .sign(value, namespace="default").
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namespace - string, optional The alternative namespace, if one was used.

Returns the original, decoded object that was passed to .sign(value, namespace="default"). If the signature is not valid
this raises a itsdangerous.BadSignature exception.

.add_message(request, message, message_type=datasette.INFO)

request - Request The current Request object

message - string The message string

message_type - constant, optional The message type - datasette.INFO, datasette.WARNING or
datasette.ERROR

Datasette’s flash messaging mechanism allows you to add a message that will be displayed to the user on the next page
that they visit. Messages are persisted in a ds_messages cookie. This method adds a message to that cookie.

You can try out these messages (including the different visual styling of the three message types) using the /-/
messages debugging tool.

.absolute_url(request, path)

request - Request The current Request object

path - string A path, for example /dbname/table.json

Returns the absolute URL for the given path, including the protocol and host. For example:

absolute_url = datasette.absolute_url(request, "/dbname/table.json")
# Would return "http://localhost:8001/dbname/table.json"

The current request object is used to determine the hostname and protocol that should be used for the returned URL.
The force_https_urls configuration setting is taken into account.

.setting(key)

key - string The name of the setting, e.g. base_url.

Returns the configured value for the specified setting. This can be a string, boolean or integer depending on the
requested setting.

For example:

downloads_are_allowed = datasette.setting("allow_download")

datasette.client

Plugins can make internal simulated HTTP requests to the Datasette instance within which they are running. This
ensures that all of Datasette’s external JSON APIs are also available to plugins, while avoiding the overhead of making
an external HTTP call to access those APIs.

The datasette.client object is a wrapper around the HTTPX Python library, providing an async-friendly API
that is similar to the widely used Requests library.

It offers the following methods:
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await datasette.client.get(path, **kwargs) - returns HTTPX Response Execute an internal
GET request against that path.

await datasette.client.post(path, **kwargs) - returns HTTPX Respons Execute an internal
POST request. Use data={"name": "value"} to pass form parameters.

await datasette.client.options(path, **kwargs) - returns HTTPX Response Execute an inter-
nal OPTIONS request.

await datasette.client.head(path, **kwargs) - returns HTTPX Respons Execute an internal
HEAD request.

await datasette.client.put(path, **kwargs) - returns HTTPX Response Execute an internal
PUT request.

await datasette.client.patch(path, **kwargs) - returns HTTPX Response Execute an internal
PATCH request.

await datasette.client.delete(path, **kwargs) - returns HTTPX Response Execute an inter-
nal DELETE request.

await datasette.client.request(method, path, **kwargs) - returns HTTPX Response
Execute an internal request with the given HTTP method against that path.

These methods can be used with datasette.urls - for example:

table_json = (
await datasette.client.get(

datasette.urls.table("fixtures", "facetable", format="json")
)

).json()

datasette.client methods automatically take the current base_url setting into account, whether or not you use
the datasette.urls family of methods to construct the path.

For documentation on available **kwargs options and the shape of the HTTPX Response object refer to the HTTPX
Async documentation.

datasette.urls

The datasette.urls object contains methods for building URLs to pages within Datasette. Plugins should use
this to link to pages, since these methods take into account any base_url configuration setting that might be in effect.

datasette.urls.instance(format=None) Returns the URL to the Datasette instance root page. This is
usually "/".

datasette.urls.path(path, format=None) Takes a path and returns the full path, taking base_url
into account.

For example, datasette.urls.path("-/logout") will return the path to the logout page, which will
be "/-/logout" by default or /prefix-path/-/logout if base_url is set to /prefix-path/

datasette.urls.logout() Returns the URL to the logout page, usually "/-/logout"

datasette.urls.static(path) Returns the URL of one of Datasette’s default static assets, for example "/
-/static/app.css"

datasette.urls.static_plugins(plugin_name, path) Returns the URL of one of the static assets
belonging to a plugin.
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datasette.urls.static_plugins("datasette_cluster_map",
"datasette-cluster-map.js") would return "/-/static-plugins/
datasette_cluster_map/datasette-cluster-map.js"

datasette.urls.static(path) Returns the URL of one of Datasette’s default static assets, for example "/
-/static/app.css"

datasette.urls.database(database_name, format=None) Returns the URL to a database page, for
example "/fixtures"

datasette.urls.table(database_name, table_name, format=None) Returns the URL to a table
page, for example "/fixtures/facetable"

datasette.urls.query(database_name, query_name, format=None) Returns the URL to a
query page, for example "/fixtures/pragma_cache_size"

These functions can be accessed via the {{ urls }} object in Datasette templates, for example:

<a href="{{ urls.instance() }}">Homepage</a>
<a href="{{ urls.database("fixtures") }}">Fixtures database</a>
<a href="{{ urls.table("fixtures", "facetable") }}">facetable table</a>
<a href="{{ urls.query("fixtures", "pragma_cache_size") }}">pragma_cache_size query</
→˓a>

Use the format="json" (or "csv" or other formats supported by plugins) arguments to get back URLs to the
JSON representation. This is usually the path with .json added on the end, but it may use ?_format=json in
cases where the path already includes .json, for example a URL to a table named table.json.

These methods each return a datasette.utils.PrefixedUrlString object, which is a subclass of the
Python str type. This allows the logic that considers the base_url setting to detect if that prefix has already
been applied to the path.

1.24.5 Database class

Instances of the Database class can be used to execute queries against attached SQLite databases, and to run intro-
spection against their schemas.

Database(ds, path=None, is_mutable=False, is_memory=False, memory_name=None)

The Database() constructor can be used by plugins, in conjunction with .add_database(db, name=None), to create
and register new databases.

The arguments are as follows:

ds - Datasette class (required) The Datasette instance you are attaching this database to.

path - string Path to a SQLite database file on disk.

is_mutable - boolean Set this to True if it is possible that updates will be made to that database - otherwise
Datasette will open it in immutable mode and any changes could cause undesired behavior.

is_memory - boolean Use this to create non-shared memory connections.

memory_name - string or None Use this to create a named in-memory database. Unlike regular memory databases
these can be accessed by multiple threads and will persist an changes made to them for the lifetime of the
Datasette server process.

The first argument is the datasette instance you are attaching to, the second is a path=, then is_mutable and
is_memory are both optional arguments.
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await db.execute(sql, ...)

Executes a SQL query against the database and returns the resulting rows (see Results).

sql - string (required) The SQL query to execute. This can include ? or :named parameters.

params - list or dict A list or dictionary of values to use for the parameters. List for ?, dictionary for :named.

truncate - boolean Should the rows returned by the query be truncated at the maximum page size? Defaults to
True, set this to False to disable truncation.

custom_time_limit - integer ms A custom time limit for this query. This can be set to a lower value than the
Datasette configured default. If a query takes longer than this it will be terminated early and raise a dataette.
database.QueryInterrupted exception.

page_size - integer Set a custom page size for truncation, over-riding the configured Datasette default.

log_sql_errors - boolean Should any SQL errors be logged to the console in addition to being raised as an
error? Defaults to True.

Results

The db.execute() method returns a single Results object. This can be used to access the rows returned by the
query.

Iterating over a Results object will yield SQLite Row objects. Each of these can be treated as a tuple or can be
accessed using row["column"] syntax:

info = []
results = await db.execute("select name from sqlite_master")
for row in results:

info.append(row["name"])

The Results object also has the following properties and methods:

.truncated - boolean Indicates if this query was truncated - if it returned more results than the specified
page_size. If this is true then the results object will only provide access to the first page_size rows
in the query result. You can disable truncation by passing truncate=False to the db.query() method.

.columns - list of strings A list of column names returned by the query.

.rows - list of sqlite3.Row This property provides direct access to the list of rows returned by the database. You can
access specific rows by index using results.rows[0].

.first() - row or None Returns the first row in the results, or None if no rows were returned.

.single_value() Returns the value of the first column of the first row of results - but only if the query returned
a single row with a single column. Raises a datasette.database.MultipleValues exception other-
wise.

.__len__() Calling len(results) returns the (truncated) number of returned results.

await db.execute_fn(fn)

Executes a given callback function against a read-only database connection running in a thread. The function will be
passed a SQLite connection, and the return value from the function will be returned by the await.

Example usage:
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def get_version(conn):
return conn.execute(

"select sqlite_version()"
).fetchall()[0][0]

version = await db.execute_fn(get_version)

await db.execute_write(sql, params=None, block=False)

SQLite only allows one database connection to write at a time. Datasette handles this for you by maintaining a queue
of writes to be executed against a given database. Plugins can submit write operations to this queue and they will be
executed in the order in which they are received.

This method can be used to queue up a non-SELECT SQL query to be executed against a single write connection to
the database.

You can pass additional SQL parameters as a tuple or dictionary.

By default queries are considered to be "fire and forget" - they will be added to the queue and executed in a separate
thread while your code can continue to do other things. The method will return a UUID representing the queued task.

If you pass block=True this behaviour changes: the method will block until the write operation has completed,
and the return value will be the return from calling conn.execute(...) using the underlying sqlite3 Python
library.

await db.execute_write_fn(fn, block=False)

This method works like .execute_write(), but instead of a SQL statement you give it a callable Python function.
This function will be queued up and then called when the write connection is available, passing that connection as the
argument to the function.

The function can then perform multiple actions, safe in the knowledge that it has exclusive access to the single writable
connection as long as it is executing.

For example:

def my_action(conn):
conn.execute("delete from some_table")
conn.execute("delete from other_table")

await database.execute_write_fn(my_action)

This method is fire-and-forget, queueing your function to be executed and then allowing your code after the call to
.execute_write_fn() to continue running while the underlying thread waits for an opportunity to run your
function. A UUID representing the queued task will be returned.

If you pass block=True your calling code will block until the function has been executed. The return value to the
await will be the return value of your function.

If your function raises an exception and you specified block=True, that exception will be propagated up to the
await line. With block=False any exceptions will be silently ignored.

Here’s an example of block=True in action:

def my_action(conn):
conn.execute("delete from some_table where id > 5")
return conn.execute("select count(*) from some_table").fetchone()[0]

(continues on next page)
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(continued from previous page)

try:
num_rows_left = await database.execute_write_fn(my_action, block=True)

except Exception as e:
print("An error occurred:", e)

Database introspection

The Database class also provides properties and methods for introspecting the database.

db.name - string The name of the database - usually the filename without the .db prefix.

db.size - integer The size of the database file in bytes. 0 for :memory: databases.

db.mtime_ns - integer or None The last modification time of the database file in nanoseconds since the epoch.
None for :memory: databases.

db.is_mutable - boolean Is this database mutable, and allowed to accept writes?

db.is_memory - boolean Is this database an in-memory database?

await db.attached_databases() - list of named tuples Returns a list of additional databases that have
been connected to this database using the SQLite ATTACH command. Each named tuple has fields seq, name
and file.

await db.table_exists(table) - boolean Check if a table called table exists.

await db.table_names() - list of strings List of names of tables in the database.

await db.view_names() - list of strings List of names of views in tha database.

await db.table_columns(table) - list of strings Names of columns in a specific table.

await db.table_column_details(table) - list of named tuples Full details of the columns in a specific
table. Each column is represented by a Column named tuple with fields cid (integer representing the col-
umn position), name (string), type (string, e.g. REAL or VARCHAR(30)), notnull (integer 1 or 0),
default_value (string or None), is_pk (integer 1 or 0).

await db.primary_keys(table) - list of strings Names of the columns that are part of the primary key for
this table.

await db.fts_table(table) - string or None The name of the FTS table associated with this table, if one
exists.

await db.label_column_for_table(table) - string or None The label column that is associated with
this table - either automatically detected or using the "label_column" key from Metadata, see Specifying
the label column for a table.

await db.foreign_keys_for_table(table) - list of dictionaries Details of columns in this table which
are foreign keys to other tables. A list of dictionaries where each dictionary is shaped like this: {"column":
string, "other_table": string, "other_column": string}.

await db.hidden_table_names() - list of strings List of tables which Datasette "hides" by default - usually
these are tables associated with SQLite’s full-text search feature, the SpatiaLite extension or tables hidden using
the Hiding tables feature.

await db.get_table_definition(table) - string Returns the SQL definition for the table - the CREATE
TABLE statement and any associated CREATE INDEX statements.

await db.get_view_definition(view) - string Returns the SQL definition of the named view.
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await db.get_all_foreign_keys() - dictionary Dictionary representing both incoming and outgoing for-
eign keys for this table. It has two keys, "incoming" and "outgoing", each of which is a list of dictionaries
with keys "column", "other_table" and "other_column". For example:

{
"incoming": [],
"outgoing": [

{
"other_table": "attraction_characteristic",
"column": "characteristic_id",
"other_column": "pk",

},
{

"other_table": "roadside_attractions",
"column": "attraction_id",
"other_column": "pk",

}
]

}

1.24.6 CSRF protection

Datasette uses asgi-csrf to guard against CSRF attacks on form POST submissions. Users receive a ds_csrftoken
cookie which is compared against the csrftoken form field (or x-csrftoken HTTP header) for every incoming
request.

If your plugin implements a <form method="POST"> anywhere you will need to include that token. You can do
so with the following template snippet:

<input type="hidden" name="csrftoken" value="{{ csrftoken() }}">

You can selectively disable CSRF protection using the skip_csrf(datasette, scope) hook.

1.24.7 The _internal database

Warning: This API should be considered unstable - the structure of these tables may change prior to the release
of Datasette 1.0.

Datasette maintains an in-memory SQLite database with details of the the databases, tables and columns for all of the
attached databases.

By default all actors are denied access to the view-database permission for the _internal database, so the
database is not visible to anyone unless they sign in as root.

Plugins can access this database by calling db = datasette.get_database("_internal") and then exe-
cuting queries using the Database API.

You can explore an example of this database by signing in as root to the latest.datasette.io demo instance
and then navigating to latest.datasette.io/_internal.
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1.25 Contributing

Datasette is an open source project. We welcome contributions!

This document describes how to contribute to Datasette core. You can also contribute to the wider Datasette ecosystem
by creating new Plugins.

1.25.1 General guidelines

• main should always be releasable. Incomplete features should live in branches. This ensures that any small
bug fixes can be quickly released.

• The ideal commit should bundle together the implementation, unit tests and associated documentation updates.
The commit message should link to an associated issue.

• New plugin hooks should only be shipped if accompanied by a separate release of a non-demo plugin that uses
them.

1.25.2 Setting up a development environment

If you have Python 3.6 or higher installed on your computer (on OS X the quickest way to do this is using homebrew)
you can install an editable copy of Datasette using the following steps.

If you want to use GitHub to publish your changes, first create a fork of datasette under your own GitHub account.

Now clone that repository somewhere on your computer:

git clone git@github.com:YOURNAME/datasette

If you want to get started without creating your own fork, you can do this instead:

git clone git@github.com:simonw/datasette

The next step is to create a virtual environment for your project and use it to install Datasette’s dependencies:

cd datasette
# Create a virtual environment in ./venv
python3 -m venv ./venv
# Now activate the virtual environment, so pip can install into it
source venv/bin/activate
# Install Datasette and its testing dependencies
python3 -m pip install -e .[test]

That last line does most of the work: pip install -e means "install this package in a way that allows me to edit
the source code in place". The .[test] option means "use the setup.py in this directory and install the optional
testing dependencies as well".

1.25.3 Running the tests

Once you have done this, you can run the Datasette unit tests from inside your datasette/ directory using pytest
like so:

pytest

You can run the tests faster using multiple CPU cores with pytest-xdist like this:

1.25. Contributing 121

https://docs.python-guide.org/starting/install3/osx/
https://github.com/simonw/datasette/fork
https://docs.pytest.org/
https://pypi.org/project/pytest-xdist/


Datasette Documentation

pytest -n auto -m "not serial"

-n auto detects the number of available cores automatically. The -m "not serial" skips tests that don’t work
well in a parallel test environment. You can run those tests separately like so:

pytest -m "serial"

1.25.4 Using fixtures

To run Datasette itself, type datasette.

You’re going to need at least one SQLite database. A quick way to get started is to use the fixtures database that
Datasette uses for its own tests.

You can create a copy of that database by running this command:

python tests/fixtures.py fixtures.db

Now you can run Datasette against the new fixtures database like so:

datasette fixtures.db

This will start a server at http://127.0.0.1:8001/.

Any changes you make in the datasette/templates or datasette/static folder will be picked up imme-
diately (though you may need to do a force-refresh in your browser to see changes to CSS or JavaScript).

If you want to change Datasette’s Python code you can use the --reload option to cause Datasette to automatically
reload any time the underlying code changes:

datasette --reload fixtures.db

You can also use the fixtures.py script to recreate the testing version of metadata.json used by the unit tests.
To do that:

python tests/fixtures.py fixtures.db fixtures-metadata.json

Or to output the plugins used by the tests, run this:

python tests/fixtures.py fixtures.db fixtures-metadata.json fixtures-plugins
Test tables written to fixtures.db
- metadata written to fixtures-metadata.json
Wrote plugin: fixtures-plugins/register_output_renderer.py
Wrote plugin: fixtures-plugins/view_name.py
Wrote plugin: fixtures-plugins/my_plugin.py
Wrote plugin: fixtures-plugins/messages_output_renderer.py
Wrote plugin: fixtures-plugins/my_plugin_2.py

Then run Datasette like this:

datasette fixtures.db -m fixtures-metadata.json --plugins-dir=fixtures-plugins/

1.25.5 Debugging

Any errors that occur while Datasette is running while display a stack trace on the console.
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You can tell Datasette to open an interactive pdb debugger session if an error occurs using the --pdb option:

datasette --pdb fixtures.db

1.25.6 Code formatting

Datasette uses opinionated code formatters: Black for Python and Prettier for JavaScript.

These formatters are enforced by Datasette’s continuous integration: if a commit includes Python or JavaScript code
that does not match the style enforced by those tools, the tests will fail.

When developing locally, you can verify and correct the formatting of your code using these tools.

Running Black

Black will be installed when you run pip install -e '.[test]'. To test that your code complies with Black,
run the following in your root datasette repository checkout:

$ black . --check
All done!
95 files would be left unchanged.

If any of your code does not conform to Black you can run this to automatically fix those problems:

$ black .
reformatted ../datasette/setup.py
All done!
1 file reformatted, 94 files left unchanged.

Prettier

To install Prettier, install Node.js and then run the following in the root of your datasette repository checkout:

$ npm install

This will install Prettier in a node_modules directory. You can then check that your code matches the coding style
like so:

$ npm run prettier -- --check
> prettier
> prettier 'datasette/static/*[!.min].js' "--check"

Checking formatting...
[warn] datasette/static/plugins.js
[warn] Code style issues found in the above file(s). Forgot to run Prettier?

You can fix any problems by running:

$ npm run fix
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1.25.7 Editing and building the documentation

Datasette’s documentation lives in the docs/ directory and is deployed automatically using Read The Docs.

The documentation is written using reStructuredText. You may find this article on The subset of reStructuredText
worth committing to memory useful.

You can build it locally by installing sphinx and sphinx_rtd_theme in your Datasette development environment
and then running make html directly in the docs/ directory:

# You may first need to activate your virtual environment:
source venv/bin/activate

# Install the dependencies needed to build the docs
pip install -e .[docs]

# Now build the docs
cd docs/
make html

This will create the HTML version of the documentation in docs/_build/html. You can open it in your browser
like so:

open _build/html/index.html

Any time you make changes to a .rst file you can re-run make html to update the built documents, then refresh
them in your browser.

For added productivity, you can use use sphinx-autobuild to run Sphinx in auto-build mode. This will run a local
webserver serving the docs that automatically rebuilds them and refreshes the page any time you hit save in your
editor.

sphinx-autobuild will have been installed when you ran pip install -e .[docs]. In your docs/
directory you can start the server by running the following:

make livehtml

Now browse to http://localhost:8000/ to view the documentation. Any edits you make should be instantly
reflected in your browser.

1.25.8 Release process

Datasette releases are performed using tags. When a new release is published on GitHub, a GitHub Action workflow
will perform the following:

• Run the unit tests against all supported Python versions. If the tests pass...

• Build a Docker image of the release and push a tag to https://hub.docker.com/r/datasetteproject/datasette

• Re-point the "latest" tag on Docker Hub to the new image

• Build a wheel bundle of the underlying Python source code

• Push that new wheel up to PyPI: https://pypi.org/project/datasette/

To deploy new releases you will need to have push access to the main Datasette GitHub repository.

Datasette follows Semantic Versioning:
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major.minor.patch

We increment major for backwards-incompatible releases. Datasette is currently pre-1.0 so the major version is
always 0.

We increment minor for new features.

We increment patch for bugfix releass.

Alpha and beta releases may have an additional a0 or b0 prefix - the integer component will be incremented with
each subsequent alpha or beta.

To release a new version, first create a commit that updates the version number in datasette/version.py and
the the changelog with highlights of the new version. An example commit can be seen here:

# Update changelog
git commit -m " Release 0.51a1

Refs #1056, #1039, #998, #1045, #1033, #1036, #1034, #976, #1057, #1058, #1053, #1064,
→˓ #1066" -a
git push

Referencing the issues that are part of the release in the commit message ensures the name of the release shows up on
those issue pages, e.g. here.

You can generate the list of issue references for a specific release by copying and pasting text from the release notes
or GitHub changes-since-last-release view into this Extract issue numbers from pasted text tool.

To create the tag for the release, create a new release on GitHub matching the new version number. You can convert
the release notes to Markdown by copying and pasting the rendered HTML into this Paste to Markdown tool.

Finally, post a news item about the release on datasette.io by editing the news.yaml file in that site’s repository.

1.25.9 Alpha and beta releases

Alpha and beta releases are published to preview upcoming features that may not yet be stable - in particular to preview
new plugin hooks.

You are welcome to try these out, but please be aware that details may change before the final release.

Please join discussions on the issue tracker to share your thoughts and experiences with on alpha and beta features that
you try out.

1.25.10 Releasing bug fixes from a branch

If it’s necessary to publish a bug fix release without shipping new features that have landed on main a release branch
can be used.

Create it from the relevant last tagged release like so:

git branch 0.52.x 0.52.4
git checkout 0.52.x

Next cherry-pick the commits containing the bug fixes:

git cherry-pick COMMIT

Write the release notes in the branch, and update the version number in version.py. Then push the branch:
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git push -u origin 0.52.x

Once the tests have completed, publish the release from that branch target using the GitHub Draft a new release form.

Finally, cherry-pick the commit with the release notes and version number bump across to main:

git checkout main
git cherry-pick COMMIT
git push

1.25.11 Upgrading CodeMirror

Datasette bundles CodeMirror for the SQL editing interface, e.g. on this page. Here are the steps for upgrading to a
new version of CodeMirror:

• Download and extract latest CodeMirror zip file from https://codemirror.net/codemirror.zip

• Rename lib/codemirror.js to codemirror-5.57.0.js (using latest version number)

• Rename lib/codemirror.css to codemirror-5.57.0.css

• Rename mode/sql/sql.js to codemirror-5.57.0-sql.js

• Edit both JavaScript files to make the top license comment a /* */ block instead of multiple // lines

• Minify the JavaScript files like this:

npx uglify-js codemirror-5.57.0.js -o codemirror-5.57.0.min.js --comments '/
→˓LICENSE/'
npx uglify-js codemirror-5.57.0-sql.js -o codemirror-5.57.0-sql.min.js --comments
→˓'/LICENSE/'

• Check that the LICENSE comment did indeed survive minification

• Minify the CSS file like this:

npx clean-css-cli codemirror-5.57.0.css -o codemirror-5.57.0.min.css

• Edit the _codemirror.html template to reference the new files

• git rm the old files, git add the new files

1.26 Changelog

1.26.1 0.58 (2021-07-14)

• New datasette --uds /tmp/datasette.sock option for binding Datasette to a Unix domain socket,
see proxy documentation (#1388)

• "searchmode": "raw" table metadata option for defaulting a table to executing SQLite full-text search
syntax without first escaping it, see Advanced SQLite search queries. (#1389)

• New plugin hook: get_metadata(datasette, key, database, table), for returning custom metadata for an instance,
database or table. Thanks, Brandon Roberts! (#1384)

• New plugin hook: skip_csrf(datasette, scope), for opting out of CSRF protection based on the incoming request.
(#1377)
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• The menu_links(), table_actions() and database_actions() plugin hooks all gained a new optional request
argument providing access to the current request. (#1371)

• Major performance improvement for Datasette faceting. (#1394)

• Improved documentation for Running Datasette behind a proxy to recommend using ProxyPreservehost
On with Apache. (#1387)

• POST requests to endpoints that do not support that HTTP verb now return a 405 error.

• db.path can now be provided as a pathlib.Path object, useful when writing unit tests for plugins.
Thanks, Chris Amico. (#1365)

1.26.2 0.57.1 (2021-06-08)

• Fixed visual display glitch with global navigation menu. (#1367)

• No longer truncates the list of table columns displayed on the /database page. (#1364)

1.26.3 0.57 (2021-06-05)

Warning: This release fixes a reflected cross-site scripting security hole with the ?_trace=1 feature. You
should upgrade to this version, or to Datasette 0.56.1, as soon as possible. (#1360)

In addition to the security fix, this release includes ?_col= and ?_nocol= options for controlling which columns
are displayed for a table, ?_facet_size= for increasing the number of facet results returned, re-display of your
SQL query should an error occur and numerous bug fixes.

New features

• If an error occurs while executing a user-provided SQL query, that query is now re-displayed in an editable form
along with the error message. (#619)

• New ?_col= and ?_nocol= parameters to show and hide columns in a table, plus an interface for hiding and
showing columns in the column cog menu. (#615)

• A new ?_facet_size= parameter for customizing the number of facet results returned on a table or view
page. (#1332)

• ?_facet_size=max sets that to the maximum, which defaults to 1,000 and is controlled by the the
max_returned_rows setting. If facet results are truncated the . . . at the bottom of the facet list now links to
this parameter. (#1337)

• ?_nofacet=1 option to disable all facet calculations on a page, used as a performance optimization for CSV
exports and ?_shape=array/object. (#1349, #263)

• ?_nocount=1 option to disable full query result counts. (#1353)

• ?_trace=1 debugging option is now controlled by the new trace_debug setting, which is turned off by default.
(#1359)
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Bug fixes and other improvements

• Custom pages now work correctly when combined with the base_url setting. (#1238)

• Fixed intermittent error displaying the index page when the user did not have permission to access one of the
tables. Thanks, Guy Freeman. (#1305)

• Columns with the name "Link" are no longer incorrectly displayed in bold. (#1308)

• Fixed error caused by tables with a single quote in their names. (#1257)

• Updated dependencies: pytest-asyncio, Black, jinja2, aiofiles, click, and itsdangerous.

• The official Datasette Docker image now supports apt-get install. (#1320)

• The Heroku runtime used by datasette publish heroku is now python-3.8.10.

1.26.4 0.56.1 (2021-06-05)

Warning: This release fixes a reflected cross-site scripting security hole with the ?_trace=1 feature. You
should upgrade to this version, or to Datasette 0.57, as soon as possible. (#1360)

1.26.5 0.56 (2021-03-28)

Documentation improvements, bug fixes and support for SpatiaLite 5.

• The SQL editor can now be resized by dragging a handle. (#1236)

• Fixed a bug with JSON faceting and the __arraycontains filter caused by tables with spaces in their names.
(#1239)

• Upgraded httpx dependency. (#1005)

• JSON faceting is now suggested even if a column contains blank strings. (#1246)

• New datasette.add_memory_database() method. (#1247)

• The Response.asgi_send() method is now documented. (#1266)

• The official Datasette Docker image now bundles SpatiaLite version 5. (#1278)

• Fixed a no such table: pragma_database_list bug when running Datasette against SQLite ver-
sions prior to SQLite 3.16.0. (#1276)

• HTML lists displayed in table cells are now styled correctly. Thanks, Bob Whitelock. (#1141, #1252)

• Configuration directory mode now correctly serves immutable databases that are listed in inspect-data.
json. Thanks Campbell Allen and Frankie Robertson. (#1031, #1229)

1.26.6 0.55 (2021-02-18)

Support for cross-database SQL queries and built-in support for serving via HTTPS.

• The new --crossdb command-line option causes Datasette to attach up to ten database files to the same /
_memory database connection. This enables cross-database SQL queries, including the ability to use joins and
unions to combine data from tables that exist in different database files. See Cross-database queries for details.
(#283)
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• --ssl-keyfile and --ssl-certfile options can be used to specify a TLS certificate, allowing
Datasette to serve traffic over https:// without needing to run it behind a separate proxy. (#1221)

• The /:memory: page has been renamed (and redirected) to /_memory for consistency with the new /
_internal database introduced in Datasette 0.54. (#1205)

• Added plugin testing documentation on Using pdb for errors thrown inside Datasette. (#1207)

• The official Datasette Docker image now uses Python 3.7.10, applying the latest security fix for that Python
version. (#1235)

1.26.7 0.54.1 (2021-02-02)

• Fixed a bug where ?_search= and ?_sort= parameters were incorrectly duplicated when the filter form on
the table page was re-submitted. (#1214)

1.26.8 0.54 (2021-01-25)

The two big new features in this release are the _internal SQLite in-memory database storing details of all con-
nected databases and tables, and support for JavaScript modules in plugins and additional scripts.

For additional commentary on this release, see Datasette 0.54, the annotated release notes.

The _internal database

As part of ongoing work to help Datasette handle much larger numbers of connected databases and tables (see Datasette
Library) Datasette now maintains an in-memory SQLite database with details of all of the attached databases, tables,
columns, indexes and foreign keys. (#1150)

This will support future improvements such as a searchable, paginated homepage of all available tables.

You can explore an example of this database by signing in as root to the latest.datasette.io demo instance
and then navigating to latest.datasette.io/_internal.

Plugins can use these tables to introspect attached data in an efficient way. Plugin authors should note that this is not
yet considered a stable interface, so any plugins that use this may need to make changes prior to Datasette 1.0 if the
_internal table schemas change.

Named in-memory database support

As part of the work building the _internal database, Datasette now supports named in-memory databases that can
be shared across multiple connections. This allows plugins to create in-memory databases which will persist data for
the lifetime of the Datasette server process. (#1151)

The new memory_name= parameter to the Database class can be used to create named, shared in-memory databases.

JavaScript modules

JavaScript modules were introduced in ECMAScript 2015 and provide native browser support for the import and
export keywords.

To use modules, JavaScript needs to be included in <script> tags with a type="module" attribute.
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Datasette now has the ability to output <script type="module"> in places where you may wish to take ad-
vantage of modules. The extra_js_urls option described in Custom CSS and JavaScript can now be used with
modules, and module support is also available for the extra_body_script() plugin hook. (#1186, #1187)

datasette-leaflet-freedraw is the first example of a Datasette plugin that takes advantage of the new support for
JavaScript modules. See Drawing shapes on a map to query a SpatiaLite database for more on this plugin.

Code formatting with Black and Prettier

Datasette adopted Black for opinionated Python code formatting in June 2019. Datasette now also embraces Prettier
for JavaScript formatting, which like Black is enforced by tests in continuous integration. Instructions for using these
two tools can be found in the new section on Code formatting in the contributors documentation. (#1167)

Other changes

• Datasette can now open multiple database files with the same name, e.g. if you run datasette path/to/
one.db path/to/other/one.db. (#509)

• datasette publish cloudrun now sets force_https_urls for every deployment, fixing some in-
correct http:// links. (#1178)

• Fixed a bug in the example nginx configuration in Running Datasette behind a proxy. (#1091)

• The Datasette Ecosystem documentation page has been reduced in size in favour of the datasette.io tools
and plugins directories. (#1182)

• The request object now provides a request.full_path property, which returns the path including any
query string. (#1184)

• Better error message for disallowed PRAGMA clauses in SQL queries. (#1185)

• datasette publish heroku now deploys using python-3.8.7.

• New plugin testing documentation on Testing outbound HTTP calls with pytest-httpx. (#1198)

• All ?_* query string parameters passed to the table page are now persisted in hidden form fields, so parameters
such as ?_size=10 will be correctly passed to the next page when query filters are changed. (#1194)

• Fixed a bug loading a database file called test-database (1).sqlite. (#1181)

1.26.9 0.53 (2020-12-10)

Datasette has an official project website now, at https://datasette.io/. This release mainly updates the documentation to
reflect the new site.

• New ?column__arraynotcontains= table filter. (#1132)

• datasette serve has a new --create option, which will create blank database files if they do not already
exist rather than exiting with an error. (#1135)

• New ?_header=off option for CSV export which omits the CSV header row, documented here. (#1133)

• "Powered by Datasette" link in the footer now links to https://datasette.io/. (#1138)

• Project news no longer lives in the README - it can now be found at https://datasette.io/news. (#1137)
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1.26.10 0.52.5 (2020-12-09)

• Fix for error caused by combining the _searchmode=raw and ?_search_COLUMN parameters. (#1134)

1.26.11 0.52.4 (2020-12-05)

• Show pysqlite3 version on /-/versions, if installed. (#1125)

• Errors output by Datasette (e.g. for invalid SQL queries) now go to stderr, not stdout. (#1131)

• Fix for a startup error on windows caused by unnecessary from os import EX_CANTCREAT - thanks,
Abdussamet Koçak. (#1094)

1.26.12 0.52.3 (2020-12-03)

• Fixed bug where static assets would 404 for Datasette installed on ARM Amazon Linux. (#1124)

1.26.13 0.52.2 (2020-12-02)

• Generated columns from SQLite 3.31.0 or higher are now correctly displayed. (#1116)

• Error message if you attempt to open a SpatiaLite database now suggests using
--load-extension=spatialite if it detects that the extension is available in a common location.
(#1115)

• OPTIONS requests against the /database page no longer raise a 500 error. (#1100)

• Databases larger than 32MB that are published to Cloud Run can now be downloaded. (#749)

• Fix for misaligned cog icon on table and database pages. Thanks, Abdussamet Koçak. (#1121)

1.26.14 0.52.1 (2020-11-29)

• Documentation on Testing plugins now recommends using datasette.client. (#1102)

• Fix bug where compound foreign keys produced broken links. (#1098)

• datasette --load-module=spatialite now also checks for /usr/local/lib/
mod_spatialite.so. Thanks, Dan Peterson. (#1114)

1.26.15 0.52 (2020-11-28)

This release includes a number of changes relating to an internal rebranding effort: Datasette’s configuration mecha-
nism (things like datasette --config default_page_size:10) has been renamed to settings.

• New --setting default_page_size 10 option as a replacement for --config
default_page_size:10 (note the lack of a colon). The --config option is deprecated but will
continue working until Datasette 1.0. (#992)

• The /-/config introspection page is now /-/settings, and the previous page redirects to the new one.
(#1103)

• The config.json file in Configuration directory mode is now called settings.json. (#1104)

• The undocumented datasette.config() internal method has been replaced by a documented .setting(key)
method. (#1107)
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Also in this release:

• New plugin hook: database_actions(datasette, actor, database, request), which adds menu items to a new cog
menu shown at the top of the database page. (#1077)

• datasette publish cloudrun has a new --apt-get-install option that can be used to install
additional Ubuntu packages as part of the deployment. This is useful for deploying the new datasette-ripgrep
plugin. (#1110)

• Swept the documentation to remove words that minimize involved difficulty. (#1089)

And some bug fixes:

• Foreign keys linking to rows with blank label columns now display as a hyphen, allowing those links to be
clicked. (#1086)

• Fixed bug where row pages could sometimes 500 if the underlying queries exceeded a time limit. (#1088)

• Fixed a bug where the table action menu could appear partially obscured by the edge of the page. (#1084)

1.26.16 0.51.1 (2020-10-31)

• Improvements to the new Binary data documentation page.

1.26.17 0.51 (2020-10-31)

A new visual design, plugin hooks for adding navigation options, better handling of binary data, URL building utility
methods and better support for running Datasette behind a proxy.

New visual design

Datasette is no longer white and grey with blue and purple links! Natalie Downe has been working on a visual refresh,
the first iteration of which is included in this release. (#1056)
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Plugins can now add links within Datasette

A number of existing Datasette plugins add new pages to the Datasette interface, providig tools for things like upload-
ing CSVs, editing table schemas or configuring full-text search.

Plugins like this can now link to themselves from other parts of Datasette interface. The menu_links(datasette,
actor, request) hook (#1064) lets plugins add links to Datasette’s new top-right application menu, and the ta-
ble_actions(datasette, actor, database, table, request) hook (#1066) adds links to a new "table actions" menu on
the table page.

The demo at latest.datasette.io now includes some example plugins. To see the new table actions menu first sign into
that demo as root and then visit the facetable table to see the new cog icon menu at the top of the page.

Binary data

SQLite tables can contain binary data in BLOB columns. Datasette now provides links for users to download this data
directly from Datasette, and uses those links to make binary data available from CSV exports. See Binary data for
more details. (#1036 and #1034).

1.26. Changelog 133

https://github.com/simonw/datasette-upload-csvs
https://github.com/simonw/datasette-upload-csvs
https://github.com/simonw/datasette-edit-schema
https://github.com/simonw/datasette-configure-fts
https://github.com/simonw/datasette/issues/1064
https://github.com/simonw/datasette/issues/1066
https://latest.datasette.io/
https://latest.datasette.io/login-as-root
https://latest.datasette.io/login-as-root
https://latest.datasette.io/fixtures/facetable
https://github.com/simonw/datasette/issues/1036
https://github.com/simonw/datasette/issues/1034


Datasette Documentation

URL building

The new datasette.urls family of methods can be used to generate URLs to key pages within the Datasette interface,
both within custom templates and Datasette plugins. See Building URLs within plugins for more details. (#904)

Running Datasette behind a proxy

The base_url configuration option is designed to help run Datasette on a specific path behind a proxy - for example
if you want to run an instance of Datasette at /my-datasette/ within your existing site’s URL hierarchy, proxied
behind nginx or Apache.

Support for this configuration option has been greatly improved (#1023), and guidelines for using it are now available
in a new documentation section on Running Datasette behind a proxy. (#1027)

Smaller changes

• Wide tables shown within Datasette now scroll horizontally (#998). This is achieved using a new <div
class="table-wrapper"> element which may impact the implementation of some plugins (for exam-
ple this change to datasette-cluster-map).

• New debug-menu permission. (#1068)

• Removed --debug option, which didn’t do anything. (#814)

• Link: HTTP header pagination. (#1014)

• x button for clearing filters. (#1016)

• Edit SQL button on canned queries, (#1019)

• --load-extension=spatialite shortcut. (#1028)

• scale-in animation for column action menu. (#1039)

• Option to pass a list of templates to .render_template() is now documented. (#1045)

• New datasette.urls.static_plugins() method. (#1033)

• datasette -o option now opens the most relevant page. (#976)

• datasette --cors option now enables access to /database.db downloads. (#1057)

• Database file downloads now implement cascading permissions, so you can download a database if you have
view-database-download permission even if you do not have permission to access the Datasette instance.
(#1058)

• New documentation on Designing URLs for your plugin. (#1053)

1.26.18 0.50.2 (2020-10-09)

• Fixed another bug introduced in 0.50 where column header links on the table page were broken. (#1011)

1.26.19 0.50.1 (2020-10-09)

• Fixed a bug introduced in 0.50 where the export as JSON/CSV links on the table, row and query pages were
broken. (#1010)
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1.26.20 0.50 (2020-10-09)

The key new feature in this release is the column actions menu on the table page (#891). This can be used to sort a
column in ascending or descending order, facet data by that column or filter the table to just rows that have a value for
that column.

Plugin authors can use the new datasette.client object to make internal HTTP requests from their plugins, allowing
them to make use of Datasette’s JSON API. (#943)

New Deploying Datasette documentation with guides for deploying Datasette on a Linux server using systemd or to
hosting providers that support buildpacks. (#514, #997)

Other improvements in this release:

• Publishing to Google Cloud Run documentation now covers Google Cloud SDK options. Thanks, Geoffrey
Hing. (#995)

• New datasette -o option which opens your browser as soon as Datasette starts up. (#970)

• Datasette now sets sqlite3.enable_callback_tracebacks(True) so that errors in custom SQL
functions will display tracebacks. (#891)

• Fixed two rendering bugs with column headers in portrait mobile view. (#978, #980)

• New db.table_column_details(table) introspection method for retrieving full details of the columns
in a specific table, see Database introspection.

• Fixed a routing bug with custom page wildcard templates. (#996)

• datasette publish heroku now deploys using Python 3.8.6.

• New datasette publish heroku --tar= option. (#969)

• OPTIONS requests against HTML pages no longer return a 500 error. (#1001)

• Datasette now supports Python 3.9.

See also Datasette 0.50: The annotated release notes.

1.26.21 0.49.1 (2020-09-15)

• Fixed a bug with writable canned queries that use magic parameters but accept no non-magic arguments. (#967)

1.26.22 0.49 (2020-09-14)

See also Datasette 0.49: The annotated release notes.

• Writable canned queries now expose a JSON API, see JSON API for writable canned queries. (#880)

• New mechanism for defining page templates with custom path parameters - a template file called pages/
about/{slug}.html will be used to render any requests to /about/something. See Path parameters
for pages. (#944)

• register_output_renderer() render functions can now return a Response. (#953)

• New --upgrade option for datasette install. (#945)

• New datasette --pdb option. (#962)

• datasette --get exit code now reflects the internal HTTP status code. (#947)

• New raise_404() template function for returning 404 errors. (#964)
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• datasette publish heroku now deploys using Python 3.8.5

• Upgraded CodeMirror to 5.57.0. (#948)

• Upgraded code style to Black 20.8b1. (#958)

• Fixed bug where selected facets were not correctly persisted in hidden form fields on the table page. (#963)

• Renamed the default error template from 500.html to error.html.

• Custom error pages are now documented, see Custom error pages. (#965)

1.26.23 0.48 (2020-08-16)

• Datasette documentation now lives at docs.datasette.io.

• db.is_mutable property is now documented and tested, see Database introspection.

• The extra_template_vars, extra_css_urls, extra_js_urls and extra_body_script plu-
gin hooks now all accept the same arguments. See extra_template_vars(template, database, table, columns,
view_name, request, datasette) for details. (#939)

• Those hooks now accept a new columns argument detailing the table columns that will be rendered on that
page. (#938)

• Fixed bug where plugins calling db.execute_write_fn() could hang Datasette if the connection failed.
(#935)

• Fixed bug with the ?_nl=on output option and binary data. (#914)

1.26.24 0.47.3 (2020-08-15)

• The datasette --get command-line mechanism now ensures any plugins using the startup() hook
are correctly executed. (#934)

1.26.25 0.47.2 (2020-08-12)

• Fixed an issue with the Docker image published to Docker Hub. (#931)

1.26.26 0.47.1 (2020-08-11)

• Fixed a bug where the sdist distribution of Datasette was not correctly including the template files. (#930)

1.26.27 0.47 (2020-08-11)

• Datasette now has a GitHub discussions forum for conversations about the project that go beyond just bug
reports and issues.

• Datasette can now be installed on macOS using Homebrew! Run brew install simonw/datasette/
datasette. See Using Homebrew. (#335)

• Two new commands: datasette install name-of-plugin and datasette uninstall
name-of-plugin. These are equivalent to pip install and pip uninstall but automatically run in
the same virtual environment as Datasette, so users don’t have to figure out where that virtual environment is -
useful for installations created using Homebrew or pipx. See Installing plugins. (#925)
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• A new command-line option, datasette --get, accepts a path to a URL within the Datasette instance. It
will run that request through Datasette (without starting a web server) and print out the repsonse. See datasette
–get for an example. (#926)

1.26.28 0.46 (2020-08-09)

Warning: This release contains a security fix related to authenticated writable canned queries. If you are using
this feature you should upgrade as soon as possible.

• Security fix: CSRF tokens were incorrectly included in read-only canned query forms, which could allow them
to be leaked to a sophisticated attacker. See issue 918 for details.

• Datasette now supports GraphQL via the new datasette-graphql plugin - see GraphQL in Datasette with the new
datasette-graphql plugin.

• Principle git branch has been renamed from master to main. (#849)

• New debugging tool: /-/allow-debug tool (demo here) helps test allow blocks against actors, as de-
scribed in Defining permissions with "allow" blocks. (#908)

• New logo for the documentation, and a new project tagline: "An open source multi-tool for exploring and
publishing data".

• Whitespace in column values is now respected on display, using white-space: pre-wrap. (#896)

• New await request.post_body()method for accessing the raw POST body, see Request object. (#897)

• Database file downloads now include a content-length HTTP header, enabling download progress bars.
(#905)

• File downloads now also correctly set the suggested file name using a content-disposition HTTP
header. (#909)

• tests are now excluded from the Datasette package properly - thanks, abeyerpath. (#456)

• The Datasette package published to PyPI now includes sdist as well as bdist_wheel.

• Better titles for canned query pages. (#887)

• Now only loads Python files from a directory passed using the --plugins-dir option - thanks, Amjith
Ramanujam. (#890)

• New documentation section on Publishing to Vercel.

1.26.29 0.45 (2020-07-01)

See also Datasette 0.45: The annotated release notes.

Magic parameters for canned queries, a log out feature, improved plugin documentation and four new plugin hooks.

Magic parameters for canned queries

Canned queries now support Magic parameters, which can be used to insert or select automatically generated values.
For example:
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insert into logs
(user_id, timestamp)

values
(:_actor_id, :_now_datetime_utc)

This inserts the currently authenticated actor ID and the current datetime. (#842)

Log out

The ds_actor cookie can be used by plugins (or by Datasette’s –root mechanism) to authenticate users. The new
/-/logout page provides a way to clear that cookie.

A "Log out" button now shows in the global navigation provided the user is authenticated using the ds_actor cookie.
(#840)

Better plugin documentation

The plugin documentation has been re-arranged into four sections, including a brand new section on testing plugins.
(#687)

• Plugins introduces Datasette’s plugin system and describes how to install and configure plugins.

• Writing plugins describes how to author plugins, from one-off single file plugins to packaged plugins that can be
published to PyPI. It also describes how to start a plugin using the new datasette-plugin cookiecutter template.

• Plugin hooks is a full list of detailed documentation for every Datasette plugin hook.

• Testing plugins describes how to write tests for Datasette plugins, using pytest and HTTPX.

New plugin hooks

• register_magic_parameters(datasette) can be used to define new types of magic canned query parameters.

• startup(datasette) can run custom code when Datasette first starts up. datasette-init is a new plugin that uses this
hook to create database tables and views on startup if they have not yet been created. (#834)

• canned_queries(datasette, database, actor) lets plugins provide additional canned queries beyond those defined
in Datasette’s metadata. See datasette-saved-queries for an example of this hook in action. (#852)

• forbidden(datasette, request, message) is a hook for customizing how Datasette responds to 403 forbidden
errors. (#812)

Smaller changes

• Cascading view permissons - so if a user has view-table they can view the table page even if they do not
have view-database or view-instance. (#832)

• CSRF protection no longer applies to Authentication: Bearer token requests or requests without
cookies. (#835)

• datasette.add_message() now works inside plugins. (#864)

• Workaround for "Too many open files" error in test runs. (#846)

• Respect existing scope["actor"] if already set by ASGI middleware. (#854)

• New process for shipping Alpha and beta releases. (#807)
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• {{ csrftoken() }} now works when plugins render a template using datasette.
render_template(..., request=request). (#863)

• Datasette now creates a single Request object and uses it throughout the lifetime of the current HTTP request.
(#870)

1.26.30 0.44 (2020-06-11)

See also Datasette 0.44: The annotated release notes.

Authentication and permissions, writable canned queries, flash messages, new plugin hooks and more.

Authentication

Prior to this release the Datasette ecosystem has treated authentication as exclusively the realm of plugins, most notably
through datasette-auth-github.

0.44 introduces Authentication and permissions as core Datasette concepts (#699). This enables different plugins to
share responsibility for authenticating requests - you might have one plugin that handles user accounts and another
one that allows automated access via API keys, for example.

You’ll need to install plugins if you want full user accounts, but default Datasette can now authenticate a single root
user with the new --root command-line option, which outputs a one-time use URL to authenticate as a root actor
(#784):

$ datasette fixtures.db --root
http://127.0.0.1:8001/-/auth-token?
→˓token=5b632f8cd44b868df625f5a6e2185d88eea5b22237fd3cc8773f107cc4fd6477
INFO: Started server process [14973]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://127.0.0.1:8001 (Press CTRL+C to quit)

Plugins can implement new ways of authenticating users using the new actor_from_request(datasette, request) hook.

Permissions

Datasette also now has a built-in concept of Permissions. The permissions system answers the following question:

Is this actor allowed to perform this action, optionally against this particular resource?

You can use the new "allow" block syntax in metadata.json (or metadata.yaml) to set required permissions
at the instance, database, table or canned query level. For example, to restrict access to the fixtures.db database
to the "root" user:

{
"databases": {

"fixtures": {
"allow": {

"id" "root"
}

}
}

}
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See Defining permissions with "allow" blocks for more details.

Plugins can implement their own custom permission checks using the new permission_allowed(datasette, actor, action,
resource) hook.

A new debug page at /-/permissions shows recent permission checks, to help administrators and plugin authors
understand exactly what checks are being performed. This tool defaults to only being available to the root user, but
can be exposed to other users by plugins that respond to the permissions-debug permission. (#788)

Writable canned queries

Datasette’s Canned queries feature lets you define SQL queries in metadata.json which can then be executed by
users visiting a specific URL. https://latest.datasette.io/fixtures/neighborhood_search for example.

Canned queries were previously restricted to SELECT, but Datasette 0.44 introduces the ability for canned queries to
execute INSERT or UPDATE queries as well, using the new "write": true property (#800):

{
"databases": {

"dogs": {
"queries": {

"add_name": {
"sql": "INSERT INTO names (name) VALUES (:name)",
"write": true

}
}

}
}

}

See Writable canned queries for more details.

Flash messages

Writable canned queries needed a mechanism to let the user know that the query has been successfully executed. The
new flash messaging system (#790) allows messages to persist in signed cookies which are then displayed to the user on
the next page that they visit. Plugins can use this mechanism to display their own messages, see .add_message(request,
message, message_type=datasette.INFO) for details.

You can try out the new messages using the /-/messages debug tool, for example at https://latest.datasette.io/-/
messages

Signed values and secrets

Both flash messages and user authentication needed a way to sign values and set signed cookies. Two new methods are
now available for plugins to take advantage of this mechanism: .sign(value, namespace="default") and .unsign(value,
namespace="default").

Datasette will generate a secret automatically when it starts up, but to avoid resetting the secret (and hence invalidating
any cookies) every time the server restarts you should set your own secret. You can pass a secret to Datasette using the
new --secret option or with a DATASETTE_SECRET environment variable. See Configuring the secret for more
details.

You can also set a secret when you deploy Datasette using datasette publish or datasette package - see
Using secrets with datasette publish.

Plugins can now sign values and verify their signatures using the datasette.sign() and datasette.unsign() methods.
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CSRF protection

Since writable canned queries are built using POST forms, Datasette now ships with CSRF protection (#798). This
applies automatically to any POST request, which means plugins need to include a csrftoken in any POST forms
that they render. They can do that like so:

<input type="hidden" name="csrftoken" value="{{ csrftoken() }}">

Cookie methods

Plugins can now use the new response.set_cookie() method to set cookies.

A new request.cookies method on the :ref:internals_request‘ can be used to read incoming cookies.

register_routes() plugin hooks

Plugins can now register new views and routes via the register_routes() plugin hook (#819). View functions can be
defined that accept any of the current datasette object, the current request, or the ASGI scope, send and
receive objects.

Smaller changes

• New internals documentation for Request object and Response class. (#706)

• request.url now respects the force_https_urls config setting. closes (#781)

• request.args.getlist() returns [] if missing. Removed request.raw_args entirely. (#774)

• New datasette.get_database() method.

• Added _ prefix to many private, undocumented methods of the Datasette class. (#576)

• Removed the db.get_outbound_foreign_keys() method which duplicated the behaviour of db.
foreign_keys_for_table().

• New await datasette.permission_allowed() method.

• /-/actor debugging endpoint for viewing the currently authenticated actor.

• New request.cookies property.

• /-/plugins endpoint now shows a list of hooks implemented by each plugin, e.g. https://latest.datasette.io/
-/plugins?all=1

• request.post_vars() method no longer discards empty values.

• New "params" canned query key for explicitly setting named parameters, see Canned query parameters. (#797)

• request.args is now a MultiParams object.

• Fixed a bug with the datasette plugins command. (#802)

• Nicer pattern for using make_app_client() in tests. (#395)

• New request.actor property.

• Fixed broken CSS on nested 404 pages. (#777)

• New request.url_vars property. (#822)
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• Fixed a bug with the python tests/fixtures.py command for outputting Datasette’s testing fixtures
database and plugins. (#804)

• datasette publish heroku now deploys using Python 3.8.3.

• Added a warning that the register_facet_classes() hook is unstable and may change in the future. (#830)

• The {"$env": "ENVIRONMENT_VARIBALE"} mechanism (see Secret configuration values) now works
with variables inside nested lists. (#837)

The road to Datasette 1.0

I’ve assembled a milestone for Datasette 1.0. The focus of the 1.0 release will be the following:

• Signify confidence in the quality/stability of Datasette

• Give plugin authors confidence that their plugins will work for the whole 1.x release cycle

• Provide the same confidence to developers building against Datasette JSON APIs

If you have thoughts about what you would like to see for Datasette 1.0 you can join the conversation on issue #519.

1.26.31 0.43 (2020-05-28)

The main focus of this release is a major upgrade to the register_output_renderer(datasette) plugin hook, which allows
plugins to provide new output formats for Datasette such as datasette-atom and datasette-ics.

• Redesign of register_output_renderer(datasette) to provide more context to the render callback and support an
optional "can_render" callback that controls if a suggested link to the output format is provided. (#581,
#770)

• Visually distinguish float and integer columns - useful for figuring out why order-by-column might be returning
unexpected results. (#729)

• The Request object, which is passed to several plugin hooks, is now documented. (#706)

• New metadata.json option for setting a custom default page size for specific tables and views, see Setting
a custom page size. (#751)

• Canned queries can now be configured with a default URL fragment hash, useful when working with plugins
such as datasette-vega, see Setting a default fragment. (#706)

• Fixed a bug in datasette publish when running on operating systems where the /tmp directory lives in
a different volume, using a backport of the Python 3.8 shutil.copytree() function. (#744)

• Every plugin hook is now covered by the unit tests, and a new unit test checks that each plugin hook has at least
one corresponding test. (#771, #773)

1.26.32 0.42 (2020-05-08)

A small release which provides improved internal methods for use in plugins, along with documentation. See #685.

• Added documentation for db.execute(), see await db.execute(sql, ...).

• Renamed db.execute_against_connection_in_thread() to db.execute_fn() and made it a
documented method, see await db.execute_fn(fn).

• New results.first() and results.single_value() methods, plus documentation for the
Results class - see Results.
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1.26.33 0.41 (2020-05-06)

You can now create custom pages within your Datasette instance using a custom template file. For example, adding a
template file called templates/pages/about.html will result in a new page being served at /about on your
instance. See the custom pages documentation for full details, including how to return custom HTTP headers, redirects
and status codes. (#648)

Configuration directory mode (#731) allows you to define a custom Datasette instance as a directory. So instead of
running the following:

$ datasette one.db two.db \
--metadata=metadata.json \
--template-dir=templates/ \
--plugins-dir=plugins \
--static css:css

You can instead arrange your files in a single directory called my-project and run this:

$ datasette my-project/

Also in this release:

• New NOT LIKE table filter: ?colname__notlike=expression. (#750)

• Datasette now has a pattern portfolio at /-/patterns - e.g. https://latest.datasette.io/-/patterns. This is a
page that shows every Datasette user interface component in one place, to aid core development and people
building custom CSS themes. (#151)

• SQLite PRAGMA functions such as pragma_table_info(tablename) are now allowed in Datasette
SQL queries. (#761)

• Datasette pages now consistently return a content-type of text/html; charset=utf-8". (#752)

• Datasette now handles an ASGI raw_path value of None, which should allow compatibilty with the Mangum
adapter for running ASGI apps on AWS Lambda. Thanks, Colin Dellow. (#719)

• Installation documentation now covers how to Using pipx. (#756)

• Improved the documentation for Full-text search. (#748)

1.26.34 0.40 (2020-04-21)

• Datasette Metadata can now be provided as a YAML file as an optional alternative to JSON. See Using YAML
for metadata. (#713)

• Removed support for datasette publish now, which used the the now-retired Zeit Now v1 hosting
platform. A new plugin, datasette-publish-now, can be installed to publish data to Zeit (now Vercel) Now v2.
(#710)

• Fixed a bug where the extra_template_vars(request, view_name) plugin hook was not receiving
the correct view_name. (#716)

• Variables added to the template context by the extra_template_vars() plugin hook are now shown in
the ?_context=1 debugging mode (see template_debug). (#693)

• Fixed a bug where the "templates considered" HTML comment was no longer being displayed. (#689)

• Fixed a datasette publish bug where --plugin-secret would over-ride plugin configuration in the
provided metadata.json file. (#724)

• Added a new CSS class for customizing the canned query page. (#727)
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1.26.35 0.39 (2020-03-24)

• New base_url configuration setting for serving up the correct links while running Datasette under a different
URL prefix. (#394)

• New metadata settings "sort" and "sort_desc" for setting the default sort order for a table. See Setting a
default sort order. (#702)

• Sort direction arrow now displays by default on the primary key. This means you only have to click once (not
twice) to sort in reverse order. (#677)

• New await Request(scope, receive).post_vars() method for accessing POST form variables.
(#700)

• Plugin hooks documentation now links to example uses of each plugin. (#709)

1.26.36 0.38 (2020-03-08)

• The Docker build of Datasette now uses SQLite 3.31.1, upgraded from 3.26. (#695)

• datasette publish cloudrun now accepts an optional --memory=2Gi flag for setting the Cloud
Run allocated memory to a value other than the default (256Mi). (#694)

• Fixed bug where templates that shipped with plugins were sometimes not being correctly loaded. (#697)

1.26.37 0.37.1 (2020-03-02)

• Don’t attempt to count table rows to display on the index page for databases > 100MB. (#688)

• Print exceptions if they occur in the write thread rather than silently swallowing them.

• Handle the possibility of scope["path"] being a string rather than bytes

• Better documentation for the extra_template_vars(template, database, table, columns, view_name, request,
datasette) plugin hook.

1.26.38 0.37 (2020-02-25)

• Plugins now have a supported mechanism for writing to a database, using the new .execute_write() and
.execute_write_fn() methods. Documentation. (#682)

• Immutable databases that have had their rows counted using the inspect command now use the calculated
count more effectively - thanks, Kevin Keogh. (#666)

• --reload no longer restarts the server if a database file is modified, unless that database was opened im-
mutable mode with -i. (#494)

• New ?_searchmode=raw option turns off escaping for FTS queries in ?_search= allowing full use of
SQLite’s FTS5 query syntax. (#676)

1.26.39 0.36 (2020-02-21)

• The datasette object passed to plugins now has API documentation: Datasette class. (#576)

• New methods on datasette: .add_database() and .remove_database() - documentation. (#671)

144 Chapter 1. Contents

https://github.com/simonw/datasette/issues/394
https://github.com/simonw/datasette/issues/702
https://github.com/simonw/datasette/issues/677
https://github.com/simonw/datasette/issues/700
https://github.com/simonw/datasette/issues/709
https://hub.docker.com/r/datasetteproject/datasette
https://github.com/simonw/datasette/issues/695
https://github.com/simonw/datasette/issues/694
https://github.com/simonw/datasette/issues/697
https://github.com/simonw/datasette/issues/688
https://github.com/simonw/datasette/issues/682
https://github.com/simonw/datasette/pull/666
https://github.com/simonw/datasette/issues/494
https://www.sqlite.org/fts5.html#full_text_query_syntax
https://github.com/simonw/datasette/issues/676
https://github.com/simonw/datasette/issues/576
https://github.com/simonw/datasette/issues/671


Datasette Documentation

• prepare_connection() plugin hook now takes optional datasette and database arguments - pre-
pare_connection(conn, database, datasette). (#678)

• Added three new plugins and one new conversion tool to the The Datasette Ecosystem.

1.26.40 0.35 (2020-02-04)

• Added five new plugins and one new conversion tool to the The Datasette Ecosystem.

• The Datasette class has a new render_template() method which can be used by plugins to render
templates using Datasette’s pre-configured Jinja templating library.

• You can now execute SQL queries that start with a -- comment - thanks, Jay Graves (#653)

1.26.41 0.34 (2020-01-29)

• _search= queries are now correctly escaped using a new escape_fts() custom SQL function. This means
you can now run searches for strings like park. without seeing errors. (#651)

• Google Cloud Run is no longer in beta, so datasette publish cloudrun has been updated to work
even if the user has not installed the gcloud beta components package. Thanks, Katie McLaughlin (#660)

• datasette package now accepts a --port option for specifying which port the resulting Docker con-
tainer should listen on. (#661)

1.26.42 0.33 (2019-12-22)

• rowid is now included in dropdown menus for filtering tables (#636)

• Columns are now only suggested for faceting if they have at least one value with more than one record (#638)

• Queries with no results now display "0 results" (#637)

• Improved documentation for the --static option (#641)

• asyncio task information is now included on the /-/threads debug page

• Bumped Uvicorn dependency 0.11

• You can now use --port 0 to listen on an available port

• New template_debug setting for debugging templates, e.g. https://latest.datasette.io/fixtures/roadside_
attractions?_context=1 (#654)

1.26.43 0.32 (2019-11-14)

Datasette now renders templates using Jinja async mode. This means plugins can provide custom template functions
that perform asynchronous actions, for example the new datasette-template-sql plugin which allows custom templates
to directly execute SQL queries and render their results. (#628)

1.26.44 0.31.2 (2019-11-13)

• Fixed a bug where datasette publish heroku applications failed to start (#633)

• Fix for datasette publish with just --source_url - thanks, Stanley Zheng (#572)

• Deployments to Heroku now use Python 3.8.0 (#632)
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1.26.45 0.31.1 (2019-11-12)

• Deployments created using datasette publish now use python:3.8 base Docker image (#629)

1.26.46 0.31 (2019-11-11)

This version adds compatibility with Python 3.8 and breaks compatibility with Python 3.5.

If you are still running Python 3.5 you should stick with 0.30.2, which you can install like this:

pip install datasette==0.30.2

• Format SQL button now works with read-only SQL queries - thanks, Tobias Kunze (#602)

• New ?column__notin=x,y,z filter for table views (#614)

• Table view now uses select col1, col2, col3 instead of select *

• Database filenames can now contain spaces - thanks, Tobias Kunze (#590)

• Removed obsolete ?_group_count=col feature (#504)

• Improved user interface and documentation for datasette publish cloudrun (#608)

• Tables with indexes now show the CREATE INDEX statements on the table page (#618)

• Current version of uvicorn is now shown on /-/versions

• Python 3.8 is now supported! (#622)

• Python 3.5 is no longer supported.

1.26.47 0.30.2 (2019-11-02)

• /-/plugins page now uses distribution name e.g. datasette-cluster-map instead of the name of the
underlying Python package (datasette_cluster_map) (#606)

• Array faceting is now only suggested for columns that contain arrays of strings (#562)

• Better documentation for the --host argument (#574)

• Don’t show None with a broken link for the label on a nullable foreign key (#406)

1.26.48 0.30.1 (2019-10-30)

• Fixed bug where ?_where= parameter was not persisted in hidden form fields (#604)

• Fixed bug with .JSON representation of row pages - thanks, Chris Shaw (#603)

1.26.49 0.30 (2019-10-18)

• Added /-/threads debugging page

• Allow EXPLAIN WITH... (#583)

• Button to format SQL - thanks, Tobias Kunze (#136)

• Sort databases on homepage by argument order - thanks, Tobias Kunze (#585)

• Display metadata footer on custom SQL queries - thanks, Tobias Kunze (#589)
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• Use --platform=managed for publish cloudrun (#587)

• Fixed bug returning non-ASCII characters in CSV (#584)

• Fix for /foo v.s. /foo-bar bug (#601)

1.26.50 0.29.3 (2019-09-02)

• Fixed implementation of CodeMirror on database page (#560)

• Documentation typo fixes - thanks, Min ho Kim (#561)

• Mechanism for detecting if a table has FTS enabled now works if the table name used alternative escaping
mechanisms (#570) - for compatibility with a recent change to sqlite-utils.

1.26.51 0.29.2 (2019-07-13)

• Bumped Uvicorn to 0.8.4, fixing a bug where the query string was not included in the server logs. (#559)

• Fixed bug where the navigation breadcrumbs were not displayed correctly on the page for a custom query.
(#558)

• Fixed bug where custom query names containing unicode characters caused errors.

1.26.52 0.29.1 (2019-07-11)

• Fixed bug with static mounts using relative paths which could lead to traversal exploits (#555) - thanks Abdus-
samet Kocak!

• Datasette can now be run as a module: python -m datasette (#556) - thanks, Abdussamet Kocak!

1.26.53 0.29 (2019-07-07)

ASGI, new plugin hooks, facet by date and much, much more...

ASGI

ASGI is the Asynchronous Server Gateway Interface standard. I’ve been wanting to convert Datasette into an ASGI
application for over a year - Port Datasette to ASGI #272 tracks thirteen months of intermittent development - but with
Datasette 0.29 the change is finally released. This also means Datasette now runs on top of Uvicorn and no longer
depends on Sanic.

I wrote about the significance of this change in Porting Datasette to ASGI, and Turtles all the way down.

The most exciting consequence of this change is that Datasette plugins can now take advantage of the ASGI standard.

New plugin hook: asgi_wrapper

The asgi_wrapper(datasette) plugin hook allows plugins to entirely wrap the Datasette ASGI application in their own
ASGI middleware. (#520)

Two new plugins take advantage of this hook:
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• datasette-auth-github adds a authentication layer: users will have to sign in using their GitHub account before
they can view data or interact with Datasette. You can also use it to restrict access to specific GitHub users, or
to members of specified GitHub organizations or teams.

• datasette-cors allows you to configure CORS headers for your Datasette instance. You can use this to enable
JavaScript running on a whitelisted set of domains to make fetch() calls to the JSON API provided by your
Datasette instance.

New plugin hook: extra_template_vars

The extra_template_vars(template, database, table, columns, view_name, request, datasette) plugin hook allows plu-
gins to inject their own additional variables into the Datasette template context. This can be used in conjunction with
custom templates to customize the Datasette interface. datasette-auth-github uses this hook to add custom HTML to
the new top navigation bar (which is designed to be modified by plugins, see #540).

Secret plugin configuration options

Plugins like datasette-auth-github need a safe way to set secret configuration options. Since the default mechanism
for configuring plugins exposes those settings in /-/metadata a new mechanism was needed. Secret configuration
values describes how plugins can now specify that their settings should be read from a file or an environment variable:

{
"plugins": {

"datasette-auth-github": {
"client_secret": {

"$env": "GITHUB_CLIENT_SECRET"
}

}
}

}

These plugin secrets can be set directly using datasette publish. See Custom metadata and plugins for details.
(#538 and #543)

Facet by date

If a column contains datetime values, Datasette can now facet that column by date. (#481)

Easier custom templates for table rows

If you want to customize the display of individual table rows, you can do so using a _table.html template include
that looks something like this:

{% for row in display_rows %}
<div>

<h2>{{ row["title"] }}</h2>
<p>{{ row["description"] }}<lp>
<p>Category: {{ row.display("category_id") }}</p>

</div>
{% endfor %}

This is a backwards incompatible change. If you previously had a custom template called _rows_and_columns.
html you need to rename it to _table.html.
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See Custom templates for full details.

?_through= for joins through many-to-many tables

The new ?_through={json} argument to the Table view allows records to be filtered based on a many-to-many
relationship. See Special table arguments for full documentation - here’s an example. (#355)

This feature was added to help support facet by many-to-many, which isn’t quite ready yet but will be coming in the
next Datasette release.

Small changes

• Databases published using datasette publish now open in Immutable mode. (#469)

• ?col__date= now works for columns containing spaces

• Automatic label detection (for deciding which column to show when linking to a foreign key) has been improved.
(#485)

• Fixed bug where pagination broke when combined with an expanded foreign key. (#489)

• Contributors can now run pip install -e .[docs] to get all of the dependencies needed to build the
documentation, including cd docs && make livehtml support.

• Datasette’s dependencies are now all specified using the ~= match operator. (#532)

• white-space: pre-wrap now used for table creation SQL. (#505)

Full list of commits between 0.28 and 0.29.

1.26.54 0.28 (2019-05-19)

A salmagundi of new features!

Supporting databases that change

From the beginning of the project, Datasette has been designed with read-only databases in mind. If a database is
guaranteed not to change it opens up all kinds of interesting opportunities - from taking advantage of SQLite immutable
mode and HTTP caching to bundling static copies of the database directly in a Docker container. The interesting ideas
in Datasette explores this idea in detail.

As my goals for the project have developed, I realized that read-only databases are no longer the right default. SQLite
actually supports concurrent access very well provided only one thread attempts to write to a database at a time, and I
keep encountering sensible use-cases for running Datasette on top of a database that is processing inserts and updates.

So, as-of version 0.28 Datasette no longer assumes that a database file will not change. It is now safe to point Datasette
at a SQLite database which is being updated by another process.

Making this change was a lot of work - see tracking tickets #418, #419 and #420. It required new thinking around how
Datasette should calculate table counts (an expensive operation against a large, changing database) and also meant
reconsidering the "content hash" URLs Datasette has used in the past to optimize the performance of HTTP caches.

Datasette can still run against immutable files and gains numerous performance benefits from doing so, but this is no
longer the default behaviour. Take a look at the new Performance and caching documentation section for details on
how to make the most of Datasette against data that you know will be staying read-only and immutable.
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Faceting improvements, and faceting plugins

Datasette Facets provide an intuitive way to quickly summarize and interact with data. Previously the only supported
faceting technique was column faceting, but 0.28 introduces two powerful new capabilities: facet-by-JSON-array and
the ability to define further facet types using plugins.

Facet by array (#359) is only available if your SQLite installation provides the json1 extension. Datasette will
automatically detect columns that contain JSON arrays of values and offer a faceting interface against those columns
- useful for modelling things like tags without needing to break them out into a new table. See Facet by JSON array
for more.

The new register_facet_classes() plugin hook (#445) can be used to register additional custom facet classes. Each
facet class should provide two methods: suggest() which suggests facet selections that might be appropriate for a
provided SQL query, and facet_results() which executes a facet operation and returns results. Datasette’s own
faceting implementations have been refactored to use the same API as these plugins.

datasette publish cloudrun

Google Cloud Run is a brand new serverless hosting platform from Google, which allows you to build a Docker
container which will run only when HTTP traffic is received and will shut down (and hence cost you nothing) the rest
of the time. It’s similar to Zeit’s Now v1 Docker hosting platform which sadly is no longer accepting signups from
new users.

The new datasette publish cloudrun command was contributed by Romain Primet (#434) and publishes
selected databases to a new Datasette instance running on Google Cloud Run.

See Publishing to Google Cloud Run for full documentation.

register_output_renderer plugins

Russ Garrett implemented a new Datasette plugin hook called register_output_renderer (#441) which allows plugins
to create additional output renderers in addition to Datasette’s default .json and .csv.

Russ’s in-development datasette-geo plugin includes an example of this hook being used to output .geojson auto-
matically converted from SpatiaLite.

Medium changes

• Datasette now conforms to the Black coding style (#449) - and has a unit test to enforce this in the future

• New Special table arguments:

– ?columnname__in=value1,value2,value3 filter for executing SQL IN queries against a
table, see Table arguments (#433)

– ?columnname__date=yyyy-mm-dd filter which returns rows where the spoecified datetime col-
umn falls on the specified date (583b22a)

– ?tags__arraycontains=tag filter which acts against a JSON array contained in a column
(78e45ea)

– ?_where=sql-fragment filter for the table view (#429)

– ?_fts_table=mytable and ?_fts_pk=mycolumn query string options can be used to specify
which FTS table to use for a search query - see Configuring full-text search for a table or view (#428)
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• You can now pass the same table filter multiple times - for example, ?
content__not=world&content__not=hello will return all rows where the content column is
neither hello or world (#288)

• You can now specify about and about_url metadata (in addition to source and license) linking to
further information about a project - see Source, license and about

• New ?_trace=1 parameter now adds debug information showing every SQL query that was executed while
constructing the page (#435)

• datasette inspect now just calculates table counts, and does not introspect other database metadata
(#462)

• Removed /-/inspect page entirely - this will be replaced by something similar in the future, see #465

• Datasette can now run against an in-memory SQLite database. You can do this by starting it without passing
any files or by using the new --memory option to datasette serve. This can be useful for experimenting
with SQLite queries that do not access any data, such as SELECT 1+1 or SELECT sqlite_version().

Small changes

• We now show the size of the database file next to the download link (#172)

• New /-/databases introspection page shows currently connected databases (#470)

• Binary data is no longer displayed on the table and row pages (#442 - thanks, Russ Garrett)

• New show/hide SQL links on custom query pages (#415)

• The extra_body_script plugin hook now accepts an optional view_name argument (#443 - thanks, Russ Gar-
rett)

• Bumped Jinja2 dependency to 2.10.1 (#426)

• All table filters are now documented, and documentation is enforced via unit tests (2c19a27)

• New project guideline: master should stay shippable at all times! (31f36e1)

• Fixed a bug where sqlite_timelimit() occasionally failed to clean up after itself (bac4e01)

• We no longer load additional plugins when executing pytest (#438)

• Homepage now links to database views if there are less than five tables in a database (#373)

• The --cors option is now respected by error pages (#453)

• datasette publish heroku now uses the --include-vcs-ignore option, which means it works
under Travis CI (#407)

• datasette publish heroku now publishes using Python 3.6.8 (666c374)

• Renamed datasette publish now to datasette publish nowv1 (#472)

• datasette publish nowv1 now accepts multiple --alias parameters (09ef305)

• Removed the datasette skeleton command (#476)

• The documentation on how to build the documentation now recommends sphinx-autobuild

1.26.55 0.27.1 (2019-05-09)

• Tiny bugfix release: don’t install tests/ in the wrong place. Thanks, Veit Heller.
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1.26.56 0.27 (2019-01-31)

• New command: datasette plugins (documentation) shows you the currently installed list of plugins.

• Datasette can now output newline-delimited JSON using the new ?_shape=array&_nl=on query string
option.

• Added documentation on The Datasette Ecosystem.

• Now using Python 3.7.2 as the base for the official Datasette Docker image.

1.26.57 0.26.1 (2019-01-10)

• /-/versions now includes SQLite compile_options (#396)

• datasetteproject/datasette Docker image now uses SQLite 3.26.0 (#397)

• Cleaned up some deprecation warnings under Python 3.7

1.26.58 0.26 (2019-01-02)

• datasette serve --reload now restarts Datasette if a database file changes on disk.

• datasette publish now now takes an optional --alias mysite.now.sh argument. This will at-
tempt to set an alias after the deploy completes.

• Fixed a bug where the advanced CSV export form failed to include the currently selected filters (#393)

1.26.59 0.25.2 (2018-12-16)

• datasette publish heroku now uses the python-3.6.7 runtime

• Added documentation on how to build the documentation

• Added documentation covering our release process

• Upgraded to pytest 4.0.2

1.26.60 0.25.1 (2018-11-04)

Documentation improvements plus a fix for publishing to Zeit Now.

• datasette publish now now uses Zeit’s v1 platform, to work around the new 100MB image limit.
Thanks, @slygent - closes #366.

1.26.61 0.25 (2018-09-19)

New plugin hooks, improved database view support and an easier way to use more recent versions of SQLite.

• New publish_subcommand plugin hook. A plugin can now add additional datasette publish pub-
lishers in addition to the default now and heroku, both of which have been refactored into default plugins.
publish_subcommand documentation. Closes #349

• New render_cell plugin hook. Plugins can now customize how values are displayed in the HTML tables
produced by Datasette’s browseable interface. datasette-json-html and datasette-render-images are two new
plugins that use this hook. render_cell documentation. Closes #352
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• New extra_body_script plugin hook, enabling plugins to provide additional JavaScript that should be
added to the page footer. extra_body_script documentation.

• extra_css_urls and extra_js_urls hooks now take additional optional parameters, allowing them to
be more selective about which pages they apply to. Documentation.

• You can now use the sortable_columns metadata setting to explicitly enable sort-by-column in the interface for
database views, as well as for specific tables.

• The new fts_table and fts_pk metadata settings can now be used to explicitly configure full-text search
for a table or a view, even if that table is not directly coupled to the SQLite FTS feature in the database schema
itself.

• Datasette will now use pysqlite3 in place of the standard library sqlite3 module if it has been installed in
the current environment. This makes it much easier to run Datasette against a more recent version of SQLite,
including the just-released SQLite 3.25.0 which adds window function support. More details on how to use this
in #360

• New mechanism that allows plugin configuration options to be set using metadata.json.

1.26.62 0.24 (2018-07-23)

A number of small new features:

• datasette publish heroku now supports --extra-options, fixes #334

• Custom error message if SpatiaLite is needed for specified database, closes #331

• New config option: truncate_cells_html for truncating long cell values in HTML view - closes #330

• Documentation for datasette publish and datasette package, closes #337

• Fixed compatibility with Python 3.7

• datasette publish heroku now supports app names via the -n option, which can also be used to
overwrite an existing application [Russ Garrett]

• Title and description metadata can now be set for canned SQL queries, closes #342

• New force_https_on config option, fixes https:// API URLs when deploying to Zeit Now - closes
#333

• ?_json_infinity=1 query string argument for handling Infinity/-Infinity values in JSON, closes #332

• URLs displayed in the results of custom SQL queries are now URLified, closes #298

1.26.63 0.23.2 (2018-07-07)

Minor bugfix and documentation release.

• CSV export now respects --cors, fixes #326

• Installation instructions, including docker image - closes #328

• Fix for row pages for tables with / in, closes #325

1.26.64 0.23.1 (2018-06-21)

Minor bugfix release.

• Correctly display empty strings in HTML table, closes #314
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• Allow "." in database filenames, closes #302

• 404s ending in slash redirect to remove that slash, closes #309

• Fixed incorrect display of compound primary keys with foreign key references. Closes #319

• Docs + example of canned SQL query using || concatenation. Closes #321

• Correctly display facets with value of 0 - closes #318

• Default ’expand labels’ to checked in CSV advanced export

1.26.65 0.23 (2018-06-18)

This release features CSV export, improved options for foreign key expansions, new configuration settings and im-
proved support for SpatiaLite.

See datasette/compare/0.22.1...0.23 for a full list of commits added since the last release.

CSV export

Any Datasette table, view or custom SQL query can now be exported as CSV.

Check out the CSV export documentation for more details, or try the feature out on https://fivethirtyeight.datasettes.
com/fivethirtyeight/bechdel%2Fmovies

If your table has more than max_returned_rows (default 1,000) Datasette provides the option to stream all rows. This
option takes advantage of async Python and Datasette’s efficient pagination to iterate through the entire matching
result set and stream it back as a downloadable CSV file.

Foreign key expansions

When Datasette detects a foreign key reference it attempts to resolve a label for that reference (automatically or using
the Specifying the label column for a table metadata option) so it can display a link to the associated row.

This expansion is now also available for JSON and CSV representations of the table, using the new _labels=on
query string option. See Expanding foreign key references for more details.

New configuration settings

Datasette’s Settings now also supports boolean settings. A number of new configuration options have been added:

• num_sql_threads - the number of threads used to execute SQLite queries. Defaults to 3.

• allow_facet - enable or disable custom Facets using the _facet= parameter. Defaults to on.
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• suggest_facets - should Datasette suggest facets? Defaults to on.

• allow_download - should users be allowed to download the entire SQLite database? Defaults to on.

• allow_sql - should users be allowed to execute custom SQL queries? Defaults to on.

• default_cache_ttl - Default HTTP caching max-age header in seconds. Defaults to 365 days - caching
can be disabled entirely by settings this to 0.

• cache_size_kb - Set the amount of memory SQLite uses for its per-connection cache, in KB.

• allow_csv_stream - allow users to stream entire result sets as a single CSV file. Defaults to on.

• max_csv_mb - maximum size of a returned CSV file in MB. Defaults to 100MB, set to 0 to disable this limit.

Control HTTP caching with ?_ttl=

You can now customize the HTTP max-age header that is sent on a per-URL basis, using the new ?_ttl= query
string parameter.

You can set this to any value in seconds, or you can set it to 0 to disable HTTP caching entirely.

Consider for example this query which returns a randomly selected member of the Avengers:

select * from [avengers/avengers] order by random() limit 1

If you hit the following page repeatedly you will get the same result, due to HTTP caching:

/fivethirtyeight?sql=select+*+from+%5Bavengers%2Favengers%5D+order+by+random%28%29+limit+1

By adding ?_ttl=0 to the zero you can ensure the page will not be cached and get back a different super hero every
time:

/fivethirtyeight?sql=select+*+from+%5Bavengers%2Favengers%5D+order+by+random%28%29+limit+1&_ttl=0

Improved support for SpatiaLite

The SpatiaLite module for SQLite adds robust geospatial features to the database.

Getting SpatiaLite working can be tricky, especially if you want to use the most recent alpha version (with support for
K-nearest neighbor).

Datasette now includes extensive documentation on SpatiaLite, and thanks to Ravi Kotecha our GitHub repo includes
a Dockerfile that can build the latest SpatiaLite and configure it for use with Datasette.

The datasette publish and datasette package commands now accept a new --spatialite argument
which causes them to install and configure SpatiaLite as part of the container they deploy.

latest.datasette.io

Every commit to Datasette master is now automatically deployed by Travis CI to https://latest.datasette.io/ - ensuring
there is always a live demo of the latest version of the software.

The demo uses the fixtures from our unit tests, ensuring it demonstrates the same range of functionality that is covered
by the tests.

You can see how the deployment mechanism works in our .travis.yml file.
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Miscellaneous

• Got JSON data in one of your columns? Use the new ?_json=COLNAME argument to tell Datasette to return
that JSON value directly rather than encoding it as a string.

• If you just want an array of the first value of each row, use the new ?_shape=arrayfirst option - example.

1.26.66 0.22.1 (2018-05-23)

Bugfix release, plus we now use versioneer for our version numbers.

• Faceting no longer breaks pagination, fixes #282

• Add __version_info__ derived from __version__ [Robert Gieseke]

This might be tuple of more than two values (major and minor version) if commits have been made after a
release.

• Add version number support with Versioneer. [Robert Gieseke]

Versioneer Licence: Public Domain (CC0-1.0)

Closes #273

• Refactor inspect logic [Russ Garrett]

1.26.67 0.22 (2018-05-20)

The big new feature in this release is Facets. Datasette can now apply faceted browse to any column in any table. It
will also suggest possible facets. See the Datasette Facets announcement post for more details.

In addition to the work on facets:

• Added docs for introspection endpoints

• New --config option, added --help-config, closes #274

Removed the --page_size= argument to datasette serve in favour of:

datasette serve --config default_page_size:50 mydb.db

Added new help section:

$ datasette --help-config
Config options:
default_page_size Default page size for the table view

(default=100)
max_returned_rows Maximum rows that can be returned from a table

or custom query (default=1000)
sql_time_limit_ms Time limit for a SQL query in milliseconds

(default=1000)
default_facet_size Number of values to return for requested facets

(default=30)
facet_time_limit_ms Time limit for calculating a requested facet

(default=200)
facet_suggest_time_limit_ms Time limit for calculating a suggested facet

(default=50)
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• Only apply responsive table styles to .rows-and-column

Otherwise they interfere with tables in the description, e.g. on https://fivethirtyeight.datasettes.com/
fivethirtyeight/nba-elo%2Fnbaallelo

• Refactored views into new views/ modules, refs #256

• Documentation for SQLite full-text search support, closes #253

• /-/versions now includes SQLite fts_versions, closes #252

1.26.68 0.21 (2018-05-05)

New JSON _shape= options, the ability to set table _size= and a mechanism for searching within specific columns.

• Default tests to using a longer timelimit

Every now and then a test will fail in Travis CI on Python 3.5 because it hit the default 20ms SQL time limit.

Test fixtures now default to a 200ms time limit, and we only use the 20ms time limit for the specific test that
tests query interruption. This should make our tests on Python 3.5 in Travis much more stable.

• Support _search_COLUMN=text searches, closes #237

• Show version on /-/plugins page, closes #248

• ?_size=max option, closes #249

• Added /-/versions and /-/versions.json, closes #244

Sample output:

{
"python": {

"version": "3.6.3",
"full": "3.6.3 (default, Oct 4 2017, 06:09:38) \n[GCC 4.2.1 Compatible Apple

→˓LLVM 9.0.0 (clang-900.0.37)]"
},
"datasette": {

"version": "0.20"
},
"sqlite": {

"version": "3.23.1",
"extensions": {
"json1": null,
"spatialite": "4.3.0a"

}
}

}

• Renamed ?_sql_time_limit_ms= to ?_timelimit, closes #242

• New ?_shape=array option + tweaks to _shape, closes #245

– Default is now ?_shape=arrays (renamed from lists)

– New ?_shape=array returns an array of objects as the root object

– Changed ?_shape=object to return the object as the root

– Updated docs

• FTS tables now detected by inspect(), closes #240
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• New ?_size=XXX query string parameter for table view, closes #229

Also added documentation for all of the _special arguments.

Plus deleted some duplicate logic implementing _group_count.

• If max_returned_rows==page_size, increment max_returned_rows - fixes #230

• New hidden: True option for table metadata, closes #239

• Hide idx_* tables if spatialite detected, closes #228

• Added class=rows-and-columns to custom query results table

• Added CSS class rows-and-columns to main table

• label_column option in metadata.json - closes #234

1.26.69 0.20 (2018-04-20)

Mostly new work on the Plugins mechanism: plugins can now bundle static assets and custom templates, and
datasette publish has a new --install=name-of-plugin option.

• Add col-X classes to HTML table on custom query page

• Fixed out-dated template in documentation

• Plugins can now bundle custom templates, #224

• Added /-/metadata /-/plugins /-/inspect, #225

• Documentation for –install option, refs #223

• Datasette publish/package –install option, #223

• Fix for plugins in Python 3.5, #222

• New plugin hooks: extra_css_urls() and extra_js_urls(), #214

• /-/static-plugins/PLUGIN_NAME/ now serves static/ from plugins

• <th> now gets class="col-X" - plus added col-X documentation

• Use to_css_class for table cell column classes

This ensures that columns with spaces in the name will still generate usable CSS class names. Refs #209

• Add column name classes to <td>s, make PK bold [Russ Garrett]

• Don’t duplicate simple primary keys in the link column [Russ Garrett]

When there’s a simple (single-column) primary key, it looks weird to duplicate it in the link column.

This change removes the second PK column and treats the link column as if it were the PK column from a
header/sorting perspective.

• Correct escaping for HTML display of row links [Russ Garrett]

• Longer time limit for test_paginate_compound_keys

It was failing intermittently in Travis - see #209

• Use application/octet-stream for downloadable databases

• Updated PyPI classifiers

• Updated PyPI link to pypi.org
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1.26.70 0.19 (2018-04-16)

This is the first preview of the new Datasette plugins mechanism. Only two plugin hooks are available so far - for
custom SQL functions and custom template filters. There’s plenty more to come - read the documentation and get
involved in the tracking ticket if you have feedback on the direction so far.

• Fix for _sort_desc=sortable_with_nulls test, refs #216

• Fixed #216 - paginate correctly when sorting by nullable column

• Initial documentation for plugins, closes #213

https://docs.datasette.io/en/stable/plugins.html

• New --plugins-dir=plugins/ option (#212)

New option causing Datasette to load and evaluate all of the Python files in the specified directory and register
any plugins that are defined in those files.

This new option is available for the following commands:

datasette serve mydb.db --plugins-dir=plugins/
datasette publish now/heroku mydb.db --plugins-dir=plugins/
datasette package mydb.db --plugins-dir=plugins/

• Start of the plugin system, based on pluggy (#210)

Uses https://pluggy.readthedocs.io/ originally created for the py.test project

We’re starting with two plugin hooks:

prepare_connection(conn)

This is called when a new SQLite connection is created. It can be used to register custom SQL functions.

prepare_jinja2_environment(env)

This is called with the Jinja2 environment. It can be used to register custom template tags and filters.

An example plugin which uses these two hooks can be found at https://github.com/simonw/
datasette-plugin-demos or installed using pip install datasette-plugin-demos

Refs #14

• Return HTTP 405 on InvalidUsage rather than 500. [Russ Garrett]

This also stops it filling up the logs. This happens for HEAD requests at the moment - which perhaps should be
handled better, but that’s a different issue.

1.26.71 0.18 (2018-04-14)

This release introduces support for units, contributed by Russ Garrett (#203). You can now optionally specify the units
for specific columns using metadata.json. Once specified, units will be displayed in the HTML view of your
table. They also become available for use in filters - if a column is configured with a unit of distance, you can request
all rows where that column is less than 50 meters or more than 20 feet for example.

• Link foreign keys which don’t have labels. [Russ Garrett]

This renders unlabeled FKs as simple links.

Also includes bonus fixes for two minor issues:

– In foreign key link hrefs the primary key was escaped using HTML escaping rather than URL escaping.
This broke some non-integer PKs.
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– Print tracebacks to console when handling 500 errors.

• Fix SQLite error when loading rows with no incoming FKs. [Russ Garrett]

This fixes an error caused by an invalid query when loading incoming FKs.

The error was ignored due to async but it still got printed to the console.

• Allow custom units to be registered with Pint. [Russ Garrett]

• Support units in filters. [Russ Garrett]

• Tidy up units support. [Russ Garrett]

– Add units to exported JSON

– Units key in metadata skeleton

– Docs

• Initial units support. [Russ Garrett]

Add support for specifying units for a column in metadata.json and rendering them on display using pint

1.26.72 0.17 (2018-04-13)

• Release 0.17 to fix issues with PyPI

1.26.73 0.16 (2018-04-13)

• Better mechanism for handling errors; 404s for missing table/database

New error mechanism closes #193

404s for missing tables/databases closes #184

• long_description in markdown for the new PyPI

• Hide SpatiaLite system tables. [Russ Garrett]

• Allow explain select / explain query plan select #201

• Datasette inspect now finds primary_keys #195

• Ability to sort using form fields (for mobile portrait mode) #199

We now display sort options as a select box plus a descending checkbox, which means you can apply sort orders
even in portrait mode on a mobile phone where the column headers are hidden.

1.26.74 0.15 (2018-04-09)

The biggest new feature in this release is the ability to sort by column. On the table page the column headers can now
be clicked to apply sort (or descending sort), or you can specify ?_sort=column or ?_sort_desc=column
directly in the URL.

• table_rows => table_rows_count, filtered_table_rows =>
filtered_table_rows_count

Renamed properties. Closes #194
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• New sortable_columns option in metadata.json to control sort options.

You can now explicitly set which columns in a table can be used for sorting using the _sort and _sort_desc
arguments using metadata.json:

{
"databases": {

"database1": {
"tables": {

"example_table": {
"sortable_columns": [

"height",
"weight"

]
}

}
}

}
}

Refs #189

• Column headers now link to sort/desc sort - refs #189

• _sort and _sort_desc parameters for table views

Allows for paginated sorted results based on a specified column.

Refs #189

• Total row count now correct even if _next applied

• Use .custom_sql() for _group_count implementation (refs #150)

• Make HTML title more readable in query template (#180) [Ryan Pitts]

• New ?_shape=objects/object/lists param for JSON API (#192)

New _shape= parameter replacing old .jsono extension

Now instead of this:

/database/table.jsono

We use the _shape parameter like this:

/database/table.json?_shape=objects

Also introduced a new _shape called object which looks like this:

/database/table.json?_shape=object

Returning an object for the rows key:

...
"rows": {

"pk1": {
...

},
"pk2": {

...

(continues on next page)

1.26. Changelog 161

https://github.com/simonw/datasette/issues/189
https://github.com/simonw/datasette/issues/189
https://github.com/simonw/datasette/issues/189
https://github.com/simonw/datasette/issues/150
https://github.com/simonw/datasette/issues/180
https://github.com/simonw/datasette/issues/192


Datasette Documentation

(continued from previous page)

}
}

Refs #122

• Utility for writing test database fixtures to a .db file

python tests/fixtures.py /tmp/hello.db

This is useful for making a SQLite database of the test fixtures for interactive exploration.

• Compound primary key _next= now plays well with extra filters

Closes #190

• Fixed bug with keyset pagination over compound primary keys

Refs #190

• Database/Table views inherit source/license/source_url/license_url metadata

If you set the source_url/license_url/source/license fields in your root metadata those values
will now be inherited all the way down to the database and table templates.

The title/description are NOT inherited.

Also added unit tests for the HTML generated by the metadata.

Refs #185

• Add metadata, if it exists, to heroku temp dir (#178) [Tony Hirst]

• Initial documentation for pagination

• Broke up test_app into test_api and test_html

• Fixed bug with .json path regular expression

I had a table called geojson and it caused an exception because the regex was matching .json and not
\.json

• Deploy to Heroku with Python 3.6.3

1.26.75 0.14 (2017-12-09)

The theme of this release is customization: Datasette now allows every aspect of its presentation to be customized
either using additional CSS or by providing entirely new templates.

Datasette’s metadata.json format has also been expanded, to allow per-database and per-table metadata. A new
datasette skeleton command can be used to generate a skeleton JSON file ready to be filled in with per-
database and per-table details.

The metadata.json file can also be used to define canned queries, as a more powerful alternative to SQL views.

• extra_css_urls/extra_js_urls in metadata

A mechanism in the metadata.json format for adding custom CSS and JS urls.

Create a metadata.json file that looks like this:
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{
"extra_css_urls": [

"https://simonwillison.net/static/css/all.bf8cd891642c.css"
],
"extra_js_urls": [

"https://code.jquery.com/jquery-3.2.1.slim.min.js"
]

}

Then start datasette like this:

datasette mydb.db --metadata=metadata.json

The CSS and JavaScript files will be linked in the <head> of every page.

You can also specify a SRI (subresource integrity hash) for these assets:

{
"extra_css_urls": [

{
"url": "https://simonwillison.net/static/css/all.bf8cd891642c.css",
"sri": "sha384-9qIZekWUyjCyDIf2YK1FRoKiPJq4PHt6tp/

→˓ulnuuyRBvazd0hG7pWbE99zvwSznI"
}

],
"extra_js_urls": [

{
"url": "https://code.jquery.com/jquery-3.2.1.slim.min.js",
"sri": "sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g="

}
]

}

Modern browsers will only execute the stylesheet or JavaScript if the SRI hash matches the content served. You
can generate hashes using https://www.srihash.org/

• Auto-link column values that look like URLs (#153)

• CSS styling hooks as classes on the body (#153)

Every template now gets CSS classes in the body designed to support custom styling.

The index template (the top level page at /) gets this:

<body class="index">

The database template (/dbname/) gets this:

<body class="db db-dbname">

The table template (/dbname/tablename) gets:

<body class="table db-dbname table-tablename">

The row template (/dbname/tablename/rowid) gets:

<body class="row db-dbname table-tablename">

The db-x and table-x classes use the database or table names themselves IF they are valid CSS identifiers.
If they aren’t, we strip any invalid characters out and append a 6 character md5 digest of the original name, in
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order to ensure that multiple tables which resolve to the same stripped character version still have different CSS
classes.

Some examples (extracted from the unit tests):

"simple" => "simple"
"MixedCase" => "MixedCase"
"-no-leading-hyphens" => "no-leading-hyphens-65bea6"
"_no-leading-underscores" => "no-leading-underscores-b921bc"
"no spaces" => "no-spaces-7088d7"
"-" => "336d5e"
"no $ characters" => "no--characters-59e024"

• datasette --template-dir=mytemplates/ argument

You can now pass an additional argument specifying a directory to look for custom templates in.

Datasette will fall back on the default templates if a template is not found in that directory.

• Ability to over-ride templates for individual tables/databases.

It is now possible to over-ride templates on a per-database / per-row or per- table basis.

When you access e.g. /mydatabase/mytable Datasette will look for the following:

- table-mydatabase-mytable.html
- table.html

If you provided a --template-dir argument to datasette serve it will look in that directory first.

The lookup rules are as follows:

Index page (/):
index.html

Database page (/mydatabase):
database-mydatabase.html
database.html

Table page (/mydatabase/mytable):
table-mydatabase-mytable.html
table.html

Row page (/mydatabase/mytable/id):
row-mydatabase-mytable.html
row.html

If a table name has spaces or other unexpected characters in it, the template filename will follow the same
rules as our custom <body> CSS classes - for example, a table called "Food Trucks" will attempt to load the
following templates:

table-mydatabase-Food-Trucks-399138.html
table.html

It is possible to extend the default templates using Jinja template inheritance. If you want to customize EVERY
row template with some additional content you can do so by creating a row.html template like this:

{% extends "default:row.html" %}

{% block content %}

(continues on next page)
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(continued from previous page)

<h1>EXTRA HTML AT THE TOP OF THE CONTENT BLOCK</h1>
<p>This line renders the original block:</p>
{{ super() }}
{% endblock %}

• --static option for datasette serve (#160)

You can now tell Datasette to serve static files from a specific location at a specific mountpoint.

For example:

datasette serve mydb.db --static extra-css:/tmp/static/css

Now if you visit this URL:

http://localhost:8001/extra-css/blah.css

The following file will be served:

/tmp/static/css/blah.css

• Canned query support.

Named canned queries can now be defined in metadata.json like this:

{
"databases": {

"timezones": {
"queries": {

"timezone_for_point": "select tzid from timezones ..."
}

}
}

}

These will be shown in a new "Queries" section beneath "Views" on the database page.

• New datasette skeleton command for generating metadata.json (#164)

• metadata.json support for per-table/per-database metadata (#165)

Also added support for descriptions and HTML descriptions.

Here’s an example metadata.json file illustrating custom per-database and per- table metadata:

{
"title": "Overall datasette title",
"description_html": "This is a <em>description with HTML</em>.",
"databases": {

"db1": {
"title": "First database",
"description": "This is a string description & has no HTML",
"license_url": "http://example.com/",

"license": "The example license",
"queries": {
"canned_query": "select * from table1 limit 3;"

},
"tables": {

"table1": {

(continues on next page)
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(continued from previous page)

"title": "Custom title for table1",
"description": "Tables can have descriptions too",
"source": "This has a custom source",
"source_url": "http://example.com/"

}
}

}
}

}

• Renamed datasette build command to datasette inspect (#130)

• Upgrade to Sanic 0.7.0 (#168)

https://github.com/channelcat/sanic/releases/tag/0.7.0

• Package and publish commands now accept --static and --template-dir

Example usage:

datasette package --static css:extra-css/ --static js:extra-js/ \
sf-trees.db --template-dir templates/ --tag sf-trees --branch master

This creates a local Docker image that includes copies of the templates/, extra-css/ and extra-js/ directories. You
can then run it like this:

docker run -p 8001:8001 sf-trees

For publishing to Zeit now:

datasette publish now --static css:extra-css/ --static js:extra-js/ \
sf-trees.db --template-dir templates/ --name sf-trees --branch master

• HTML comment showing which templates were considered for a page (#171)

1.26.76 0.13 (2017-11-24)

• Search now applies to current filters.

Combined search into the same form as filters.

Closes #133

• Much tidier design for table view header.

Closes #147

• Added ?column__not=blah filter.

Closes #148

• Row page now resolves foreign keys.

Closes #132

• Further tweaks to select/input filter styling.

Refs #86 - thanks for the help, @natbat!

• Show linked foreign key in table cells.
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• Added UI for editing table filters.

Refs #86

• Hide FTS-created tables on index pages.

Closes #129

• Add publish to heroku support [Jacob Kaplan-Moss]

datasette publish heroku mydb.db

Pull request #104

• Initial implementation of ?_group_count=column.

URL shortcut for counting rows grouped by one or more columns.

?_group_count=column1&_group_count=column2 works as well.

SQL generated looks like this:

select "qSpecies", count(*) as "count"
from Street_Tree_List
group by "qSpecies"
order by "count" desc limit 100

Or for two columns like this:

select "qSpecies", "qSiteInfo", count(*) as "count"
from Street_Tree_List
group by "qSpecies", "qSiteInfo"
order by "count" desc limit 100

Refs #44

• Added --build=master option to datasette publish and package.

The datasette publish and datasette package commands both now accept an optional --build
argument. If provided, this can be used to specify a branch published to GitHub that should be built into the
container.

This makes it easier to test code that has not yet been officially released to PyPI, e.g.:

datasette publish now mydb.db --branch=master

• Implemented ?_search=XXX + UI if a FTS table is detected.

Closes #131

• Added datasette --version support.

• Table views now show expanded foreign key references, if possible.

If a table has foreign key columns, and those foreign key tables have label_columns, the TableView will
now query those other tables for the corresponding values and display those values as links in the corresponding
table cells.

label_columns are currently detected by the inspect() function, which looks for any table that has just two
columns - an ID column and one other - and sets the label_column to be that second non-ID column.

• Don’t prevent tabbing to "Run SQL" button (#117) [Robert Gieseke]

See comment in #115

• Add keyboard shortcut to execute SQL query (#115) [Robert Gieseke]
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• Allow --load-extension to be set via environment variable.

• Add support for ?field__isnull=1 (#107) [Ray N]

• Add spatialite, switch to debian and local build (#114) [Ariel Núñez]

• Added --load-extension argument to datasette serve.

Allows loading of SQLite extensions. Refs #110.

1.26.77 0.12 (2017-11-16)

• Added __version__, now displayed as tooltip in page footer (#108).

• Added initial docs, including a changelog (#99).

• Turned on auto-escaping in Jinja.

• Added a UI for editing named parameters (#96).

You can now construct a custom SQL statement using SQLite named parameters (e.g. :name) and datasette
will display form fields for editing those parameters. Here’s an example which lets you see the most popular
names for dogs of different species registered through various dog registration schemes in Australia.

• Pin to specific Jinja version. (#100).

• Default to 127.0.0.1 not 0.0.0.0. (#98).

• Added extra metadata options to publish and package commands. (#92).

You can now run these commands like so:

datasette now publish mydb.db \
--title="My Title" \
--source="Source" \
--source_url="http://www.example.com/" \
--license="CC0" \
--license_url="https://creativecommons.org/publicdomain/zero/1.0/"

This will write those values into the metadata.json that is packaged with the app. If you also pass
--metadata=metadata.json that file will be updated with the extra values before being written into
the Docker image.

• Added production-ready Dockerfile (#94) [Andrew Cutler]

• New ?_sql_time_limit_ms=10 argument to database and table page (#95)

• SQL syntax highlighting with Codemirror (#89) [Tom Dyson]

1.26.78 0.11 (2017-11-14)

• Added datasette publish now --force option.

This calls now with --force - useful as it means you get a fresh copy of datasette even if Now has already
cached that docker layer.

• Enable --cors by default when running in a container.
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1.26.79 0.10 (2017-11-14)

• Fixed #83 - 500 error on individual row pages.

• Stop using sqlite WITH RECURSIVE in our tests.

The version of Python 3 running in Travis CI doesn’t support this.

1.26.80 0.9 (2017-11-13)

• Added --sql_time_limit_ms and --extra-options.

The serve command now accepts --sql_time_limit_ms for customizing the SQL time limit.

The publish and package commands now accept --extra-options which can be used to specify additional
options to be passed to the datasite serve command when it executes inside the resulting Docker containers.

1.26.81 0.8 (2017-11-13)

• V0.8 - added PyPI metadata, ready to ship.

• Implemented offset/limit pagination for views (#70).

• Improved pagination. (#78)

• Limit on max rows returned, controlled by --max_returned_rows option. (#69)

If someone executes ’select * from table’ against a table with a million rows in it, we could run into problems:
just serializing that much data as JSON is likely to lock up the server.

Solution: we now have a hard limit on the maximum number of rows that can be returned by a query. If that
limit is exceeded, the server will return a "truncated": true field in the JSON.

This limit can be optionally controlled by the new --max_returned_rows option. Setting that option to 0
disables the limit entirely.
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